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Chapter 1

Introduction

1.1 Relativistic Effects

Although Dirac himself at the time he published his famous equations for
the relativistic wave equation wrote that [1] (our emphasis),

”The general theory of quantum mechanics is now almost com-
plete, the imperfections that still remain being in connection with
the exact fitting in of the theory with relativity ideas. This give
rise to difficulties only when high-speed particles are involved, and
are therefore of no importance in the consideration of atomic and
molecular structure and ordinary chemical reactions, in which it
is, indeed, usually sufficiently accurate if one neglects relativity
variation of mass with velocity and assumes only Coulomb forces
between the various electrons and atomic nuclei.”

it is now a well established fact [2-6] that we often need to account for
relativistic effects in theoretical calculations on atoms and molecules. For
molecules containing heavy atoms non-relativistic calculations will not even
give qualitatively correct results (e.g., see [2-6]), and even for molecules
containing only light atoms relativity is needed for very precise calculations
[7]. With the term “relativistic effects” we mean the difference between the
approximative physical description using a non-relativistic model and the
more correct relativistic physical description. This difference is just the result
of applying different physical models, and has no connection to reality —
there is no such thing as an non-relativistic molecule, but there are molecules
with can be described sufficiently accurate with a non-relativistic model.
However, as the majority of theoretical chemistry calculations are per-
formed on organic molecules containing only light atoms, it is often a very
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good approximation to neglect relativistic effects. But there is also consid-
erable interest in molecules containing heavy atoms, for example molecules
appearing in nuclear waste processing, such as actinide oxides: uranyl (UO3")
is one of the most studied molecules containing heavy atoms, and the liter-
ature is huge: a search on Web of Science [8] resulted in 2298 papers where
uranyl had been studied! Also molecules containing plutonium appear in nu-
clear waste processing. Plutonium is both radioactive and toxic, so it is very
difficult to perform experiments, and there is currently only very few labo-
ratories in Europe that are allowed to do experiments with plutonium. In
this area calculations may both guide the experimentalists to design and help
them interprete their experiments but, in time, also even replace dangerous
and difficult experiments.

It may also be appropriate to use relativistic methods on molecules con-
taining light atoms when calculating spin-dependent or magnetic properties.
Examples include:

e Parity weak interactions where the relativistic operator is exceedingly
simple (e.g., see [9]) and it is only necessary to calculate an expectation
value, whereas in non-relativistic theory it is an infinite series where the
first term is a complicated linear response function [10] (see below).

e NMR parameters, where four non-relativistic operators (Fermi-contact,
spin-dipole, paramagnetic spin-orbit and diamagnetic spin-orbit) are
replaced by one single relativistic operator [11].

e ESR parameters, which in the relativistic realm are simple expectation
values [12] become complicated linear response terms in non-relativistic
theory [13].

e Spin-forbidden transitions. The relativistic wave function does not
have a specific spin multiplet symmetry but is rather, in the case of a
even number of electrons, a linear combination of singlets, triplets, etc.
Hence, it is possible to calculate singlet — triplet transition moments
directly, such as phosphorescence, using the polarization propagator
(PP) method [14], whereas it is necessary to invoke double perturba-
tion theory and calculate quadratic response functions in order to get
transition moments in a non-relativistic framework [15].

The common theme for many of these properties is that spin-dependent rel-
ativistic expectation values become more complicated response functions in-
volving the spin-orbit operator. For example, the matrix elements needed for
the parity violating energy shifts within a 4-component relativistic framework
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are (e.g., see [9])

(0] 0a(r)y5]0), (1.1)

where p4(r) is the nuclear charge distribution and s is the matrix
_ |02 1
V5 = [12 02:| . (12)

The corresponding non-relativistic expression involves the linear response
function [16]

< HSO H >, (1.3)

where H5 is the spin-orbit operator and H} the anti-commutator {o - p, 04} -

1.2 Why 4-component Calculations

There are several approaches to include relativistic effects. Most of them,
if not all, are approximative in nature. Note that even the rigorous 4-
component approach is already approximative in nature as we use the Dirac-
Coulomb(-Breit) Hamiltonian which is an approximation to the full QED
Hamiltonian — if it exists!

Most approaches start by eliminating the small component. Using the
Foldy-Wouthuysen transformation [17] one may transform the 4-component
Dirac-Coulomb-Breit operator into a 2-component Hamiltonian [18]. This
requires an infinite expansion which is typically terminated after 1st order
yielding the Breit-Pauli Hamiltonian [18]. The Foldy-Wouthuysen trans-
formation can be performed analytically in absence of an external potential.
Unfortunately the Breit-Pauli Hamiltonian includes many complicated terms
of which many are singular, making any variational approach doomed. In-
stead, the operators are almost exclusively used perturbatively. This has the
advantage of treating relativistic effects as perturbations to the well-known
non-relativistic problem. However, the perturbative approach will only work
for light atoms where the relativistic effects are small. The higher-order
terms of the Foldy-Wouthuysen transformation are even more complicated
and singular.

There are several other approaches based on elimination of the small
component or perturbative approaches:

e Direct Perturbation Theory (DPT) developed by Kutzelnigg and cowork-
ers [19-22], which is based on a change of the metric, and a perturbative
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expansion in ¢ 2. Some classes of relativistic effects are treated to in-
finite orders in this approach. Kutzelnigg, Liu, and van Wiillen have
reported a DPT MCSCF program [23,24].

e Dyall uses a similar approach to obtain a modified Dirac equation [19,
25], which can be separated into a spin-free and a spin-dependent part
[25]. At this point approximations can be invoked. For example, one
may solve the spin-free modified Dirac equation and add the spin-orbit
effect perturbatively.

e One may also reduce the Dirac-Coulomb-Breit operator by expansion in
powers of the external field as in the second-order Douglas-Kroll-Hess
method [26-29]. The operators in this approach are non-singular but
involve integrals which cannot be solved analytically even for Gaussian
basis set functions. The transformation can, however, be performed
analytically for the free electron.

e Another alternative is the ZORA method (Zeroth Order Regular Ap-
proximation) [30,31] where 1 + # is expanded in a power-series.
The problem here is the potential in the denominator which will be
difficult to evaluate for the electron—electron interactions in molecules.
The approach is more suited for DF'T where it has found its main ap-
plications, although it has been implemented for ab initio methods as

well.

Many of these methods has troublesome features. For example, in the
Douglas-Kroll-Hess method the property operators as well as the energy op-
erators should also be transformed. Neglecting to do so will introduce picture
change effects [32], which may be negligible for valence properties such as
dipole moments, but is certainly not negligible for core properties [33,34] and
the size of the picture change error may, in fact, be as large as the relativistic
effect itself [35]. The DPT MCSCF formalism by Kutzelnigg et al. [23,24],
in which quasi-degenerate perturbation theory has to be applied, also leads
to very complicated expressions. So far only first-order DPT MCSCF has
been implemented [24].

Although technically not restricted to one- or two-component methods we
also mention one further approximation often used in conjunction with the
above methods: Effective core potentials (ECP) or pseudo-potentials (PP).
Both methods represents the core by some model potential. This reduces the
number of integrals to be calculated as only the valence is treated explicitly.
There also exists relativistic ECPs or PPs that can be used in non-relativistic
1-component programs to model a relativistic core.
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The conclusion is that the 4-component methods provide the least com-
plicated formalism, but due to the expensive nature of the calculations,
many people have developed approximate methods where the simplicity of
the 4-component calculations are sacrificed in order to obtain faster calcu-
lations. Many molecular 4-component programs such as BERTHA [36,37] or
DIRAC [38] have very efficient integral generators giving large speed-ups. For
example, a relativistic DHF calculation with DIRAC requires theoretically ap-
proximately 50 times as much CPU time as an identical non-relativistic HF
calculation. However, due to efficient integral screening and other techniques
the factor is reduced to typically 2-10. Another example is the calculation of
molecular gradients needed for first or higher order geometry optimizations.
Depending on the accuracy needed in the calculation, integral screening re-
duces the relativistic CPU time to non-relativistic CPU time factor for the
molecular gradient in CsAu from 26 to 1.5 — 3 [39]. It is also important to
note that 4-component calculations are needed to calibrate the approxima-
tive methods. Another advantage is that variational inclusion of spin-orbit
effects, although also included in some of the two-component methods. Yet
another advantage is the simple appearance of especially magnetic opera-
tors, which are inherently relativistic. Their simple form is even kept with
the non-relativistic 4-component Lévy-Leblond Hamiltonian [40,41]. So it
may even be advantageous to use 4-component non-relativistic Hamiltonian
instead of the usual 1-component non-relativistic Schrodinger Hamiltonian!

Quiney, Skaane, and Grant expressed it very provocatively [37]:

” Ab initio relativistic quantum chemistry: four-components good,
two-components bad!”

1.3 Electron Correlation

After we have established that treatment of relativistic effects are needed we
turn to the next problem. It is well known that we need to go beyond the
independent particle model in order to calculate most atomic and molecular
properties qualitatively or quantitatively correct.

As for non-relativistic theory there are many ways to include the many-
body effects. Most four-component relativistic programs developed so far
treat only dynamical correlation using second-order Mgller-Plesset perturba-
tion theory (MP2) [42,43], restricted active space configuration interaction
theory (RASCI) [44], or coupled-cluster methods [45-47].

An alternative route to including dynamical electron correlation is density
functional theory (DFT) [48].
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Most of these are based on a single configuration as reference, which is
a reasonable approximation for closed shell systems. But for reactive states,
excited states, states with more than one open shell, or systems with near
degeneracies of states this gives rise to a manifold of configurations that
will mix. In relativistic systems there are additional near degeneracies due
to spin-orbit coupling. The conclusion is that in many cases you need the
multi-configurational approach. MCSCF is better than CI in the sense that,
due to the orbital relaxation, a shorter CI expansion can be used compared
to CI. Another advantage of MCSCF is that it is fully variational.

However, in order to treat both dynamical and static correlation it is
necessary to go beyond MCSCF and use, for example, the CASPTn method
[49, 50] or multi-configurational CC methods. The former method has not
been implemented for molecular 4-component methods yet'?. The latter
methods are in the development phase (e.g., the Fock-space CC or interme-
diate Hamiltonian Fock-space CC?, or GAS CC [60]).

1.4 Outline of Thesis

We start by giving a short general introduction to relativistic quantum me-
chanics in Chapter 2. We discuss the single particle Dirac Hamiltonian and
move on to the molecular relativistic Hamiltonian.

In Chapter 3 we discuss the average-of-configuration open-shell method
for obtaining start orbitals for correlation methods.

Chapter 4 is dedicated to Kramers restricted MCSCF. The formalism was
already published by Jensen et al. in 1996 [61] so we only review the formalism
introducing the quaternion formalism and discuss the implementation.

In Chapter 5 we discuss numerous approximations and auxiliary algo-
rithms for speeding up KR-MCSCF calculations.

In Chapter 6 we show a few preliminary applications of the newly devel-
oped KR-MCSCF code.

Chapter 7 summarizes the work presented in this thesis and give sugges-
tions for further research.

The second part of the thesis is some papers and manuscripts. See Part
IT for a summary of these.

! Although there exists an 1-component CASPT2 method with relativistic effective core
potentials where spin-orbit effects can be added using an effective one-electron spin-orbit
Hamiltonian in MoLCAS [51-53]

2There has also been reported an atomic CASPT2 program by Vilkas et al. [54]

3For reviews see [55,56] and references therein; for relativistic four-component Fock-
space CC see [57-59].
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The last part is a number of appendices with the explicit details about
how to calculate exp(—&) for quaternion matrices x and how to calculate
various quaternion Fock matrices needed in the KR-MCSCF program.
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Chapter 2

Relativistic Quantum
Mechanics

In this chapter some of the many aspects of relativistic quantum mechanics
is discussed. We briefly discuss the relativistic single particle wave equation;
the Dirac equation. Since this thesis concerns molecular relativistic quantum
mechanics we also discuss the molecular Hamiltonian. We end this chapter
discussing how to obtain computational gains by using time-reversal symme-
try and double group symmetry, and how this is easily implemented using a
quaternion formalism.

Throughout this thesis we use atomic units, i.e., A = m, = 1. Within
this unit system the speed of light is ¢ = 137.0359895.... Although m, =1
we may write it explicitly for clarity.

2.1 The Dirac Equation

The starting point for all this is Dirac’s famous relativistic single particle
wave equation from 1928 [1], here written in Dirac’s original form

10
z . =0 2.1
<08t+a p+ﬂmc)1/; , (2.1)
where p = —i [%, %, d%] is the momentum, and « is a vector with 4 x 4

matrices oy, oy, and «a, as its components. The «a, matrices and the § matrix

15
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are given by [1]

02 Oy
Ay = U= z
U 0y 09 ) 1Y 2y

(I, 0
ﬁ - |:02 _12:| )
where o,,u = z,y, 2 are the Pauli spin matrices
01 0 —2 1 0
0'$—|:1 0}, O'y—|:i O}’ oz—[o _1}. (2.3)

In order to align the non-relativistic and relativistic energy scales 3 is
often replaced with

(2.2)

, [0, 0
g = [02 _2212}- (2.4)

For calculation of wave functions and energies we restrict ourselves to
time-independent potentials. Thus, we can remove the time-dependency.
This gives us the time-independent Dirac equation

(a-p+ B'me)y = %w. (2.5)

We will not go into great details about the structure and properties of
the operator, spectrum, or eigenvalues. This can be found in many standard
textbooks on the topic, for example, Moss [2] or Rose [3]. We will, however,
discuss a few aspects. First, as the o and § matrices are 4 x 4 matrices the
wave function is a 4-component vector, or a 4-component spinor. Second, the
spectrum is not bounded from below as the non-relativistic spectrum. For
the free-particle case, Eq. (2.5), two kind of solutions occur: negative energy
solutions with eigenvalues less than —mc? and positive energy solutions with
eigenvalues greater than +mc? (assuming we have used 3 from Eq. (2.2)).
This is a consequence of the fact that the Dirac equation can be used to
describe both electrons and positrons. In the presence of a nuclear potential
or electronic potential there are bound positive energy states with eigenvalues
slightly less +mc?.

The existence of a negative energy continuum creates problems in the
formulation of variational theory, since, if the negative continuum is empty,
electrons will fall into it under emission of photons with energies ~ —2mc?.

Dirac solved this by postulating that the negative energy states are filled
[4], hence the Pauli principle will prevent the collapse into the negative energy
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states. Excitations of an electron from a negative energy states will introduce
a positively charged hole in the negative energy continuum: a positron. How-
ever, this introduces new problems as the vacuum is now infinitely charged
with infinite energy, as the expectation value (vac|H|vac) = —oo. This prob-
lem is solved in the QED reinterpretation by using so-called normal ordered
operators, where (vac|H|vac) = 0.

So the question arises on what to do about the negative energy states
in DHF or MCSCF calculations: should we consider the negative energy
states empty (the empty Dirac approach), filled (the filled Dirac approach),
or use the QED interpretation? In principle all three approaches can be used.
However, the filled Dirac approach is troublesome because of the infinities
involved, hence we are left with either the empty Dirac approach or the QED
approach. Since we use finite basis sets we will not have infinities but rather
a large number of large numbers, which is equally troublesome considering
that we use finite-precision computers performing the calculations.

In most DHF procedures the empty Dirac approach is used, and the de-
sired electronic state is an excited state to which we converge using vector
selection by implicitly projecting out negative energy states [5]. This is equiv-
alent to employing a mini-max principle [6] where the energy is minimized
with respect to positive energy parameters and maximized with respect to
negative energy parameters. There is also an computational aspect as it is
often more expensive to treat orbitals as occupied rather than empty.

2.2 The Relativistic Molecular Hamiltonian

Our main interest is to perform molecular calculations for which we need a
molecular Hamiltonian. In order to obtain this we first need the Dirac one-
electron Hamiltonian in presence of a general static potential, namely the
one generated by the nuclei in the Born-Oppenheimer reference frame. The
Dirac Hamiltonian in presence of such a field is given by [1]

hp =a-p+ Bmec+ . (2.6)

The scalar potential arising from a charge distribution is given by

o) = [ ar 25 27)

r; — 1|

where g is the charge distribution. In non-relativistic theory the charge dis-
tribution is often chosen to be a delta function corresponding to a treatment
of the nuclei as a point charges:

0a(r;) = Z46(r;). (2.8)
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This leads to the usual Coulombic potential
Za

pa(ri) = (2.9)
TiA

The Coulomb potential can also be used in relativistic calculations but in

order to avoid having to reproduce singularities at the origin for the 1s;/,

and 2p;/; orbitals, which would require very good basis sets, a finite nucleus

potential is often used. The use of Gaussian basis set functions in molecular

calculations favors the use of a Gaussian charge distribution [7]

600 = Za (") " exp (nar,) (2.10)

where 74 is a nuclei dependent parameter, in order to calculate integrals
(Xuldalx,) over the potential analytically. Other forms of the charge dis-
tribution such as the two-parameter Fermi distribution [8] or the uniformly
charged sphere distribution [9-12] may also be used, but they require nu-
merical integrations. Since the differences between the different finite nu-
cleus charge distributions are not large' the Gaussian charge distribution is
preferred [7]. There are, however, observable differences between the point
charge and the finite nuclei distributions (e.g., see [7,9-14]). For an eztensive
review of finite nucleus distributions see Ref. [13]. As a final note we add
that the nuclear potential ¢4 is Lorentz invariant in the Born-Oppenheimer
frame as the velocity of the nuclei is zero.

We now turn to the electron-electron interaction which obviously has to
be different from the non-relativistic Coulomb operator that is not Lorentz
invariant. The covariant electron-electron interaction derived from QED is
Vijiary = - (M exp (iwayTij) + (e - Vi) (0 - V) 20 (WSWM) 1) '

Tij WanyTij

Tz'j
(2.11)

The operator is derived in the Coulomb gauge (V - A = 0), assuming the
electrons are in stationary states in some effective static potential [15] and
including only the single-photon exchange with a frequency of w,,. In the
limit of w — 0 the electron-electron interaction, Eq. (2.11), reduces to the
Coulomb-Breit interaction [16]

gCoulomb—Breit (rz’j) — gCoulomb (rij) + gBreit (rij) (2 1 2)

1One should be careful, however, since some properties may be very dependent upon
the choice of nuclear charge distribution. One such property could be the parity viola-
tion energy as pointed out by Andrae [13], although there have not been reported any
investigations on this subject.
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where gCuomb j5 the usual Coulomb interaction

1
gCoulomb(rij) =, (2.13)
T'z'j
and §B™" is the Breit term [16]
- Breit a;- o (o) (o 1y)
i) = — 2.14
) = - (ot T L e

which also can be written as a sum
gBreit(rij) — gGaunt(rij) + anuge(rzj), (2.15)

of the Gaunt term [17]

~Gaun [0 7Rl 6 7]
g (ry) = ———2, (2.16)
Tz'j

and the gauge term

ggauge(rij) _ (a; X I‘ij) -?’(aj X I'ij)'
2r3;

(2.17)

The Coulomb-Breit interaction (Eq. (2.12)) can be shown to be Lorentz
invariant to O(a?) [5,18-22] where « is the fine structure constant.

The gauge term involves integrals other than 1/r;; and is often neglected.
The Gaunt term is also often omitted in order to reduce the number of
integrals. The use of the ¢g©°"°™ interaction will in the non-relativistic limit
[23] correspond to only including the spin-own-orbit and one of the Darwin-
like terms of the Breit-Pauli Hamiltonian. Other terms such as the spin-
other-orbit, spin-spin and others are not included. The effect of the Gaunt
and gauge terms are most profound near the nucleus [24] and can be neglected
for many valence properties (such as bond lengths [25] or dissociation energy
[26]) whereas it may be needed for correct description of some core properties.

Analogous to non-relativistic theory the molecular Hamiltonian is now
written as [18,27]

R . lem. =

H= Z hpi + 5 Z i + Vv, (2.18)
( i£]

where hp,; is the Dirac one-electron Hamiltonian for electron i (Eq. (2.6)),

gi; 1s the electron-electron interaction, and Vi y is the nucleus-nucleus inter-

action which is treated non-relativistically in the Born-Oppenheimer frame,

i.e.:

. ZaZ
Vv =Y é‘ B (2.19)
A<p B
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In the rest of this thesis we will restrict ourselves to the Dirac-Coulomb
Hamiltonian

. - 1 ’
HDlrac-Coulomb — Z hD;i + 5 Z ggoulomb + VNN; (220)
i 1#£]j

We will almost exclusively use the Hamiltonian in the second quantized
form rather than in the first quantized form above (Eq. (2.20)). The second
quantized form of an operator is obtained from the first quantized form by
evaluating [28]

h= /dr T(r)'h(r)T(r),

(2.21)
g = // dr, dr, \I!(rl)T\If(rQ)Tg(rl,rQ)\If(rQ)\I!(rl),

where W is the field operator given by

U=> o, (2.22)

where ¢, is orbital no. p and the operator p is the annihilation operator. p
will remove an electron in orbital ¢, in a Slater determinant. The conjugate
p' is the creation operator that creates an electron in orbital p. It follows
that the Dirac-Coulomb(-Breit) Hamiltonian, Eq. (2.20), in a complex spinor
basis can be written as

; 1
H = Z hogp'q + ) Z oarsP'T' 54, (2.23)
pq

pqrs

where the matrix elements are given by

hpq = (¢me|¢q) = (me‘q)a

! A (2.24)
Ipars = (Ppdq| G| rds) = (pq|g|Ts) .

The first and second quantization operators are equivalent in the limit of
a complete basis set. For non-complete basis set the second quantization
operator can be regarded as a projection onto the full first quantization op-
erator. The advantage of working with second quantization operators is that
it is possible to do simplifications at the operator level. Also, the formulae
will appear as they will be implemented, and there is furtermore no explicit
reference to the number of electrons.
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2.3 Time Reversal Symmetry, Double Group
Symmetry, and Quaternions

In non-relativistic quantum chemistry the use of both spin-symmetry and
point group symmetry is widely used, since it reduces the computational
effort considerably. As the Hamiltonian has no explicit dependence on spin,
the orbitals can in the absence of an external magnetic field be split into the
product of a spatial part and a spin part. The spin part can be integrated
analytically which leads to large computational savings, for example, in the
evaluation of two-electron integrals where sixteen integrals reduce to one?
and four one-electron integrals reduce to one. The spatial part left after the
spin integration is a boson function and can thus be adapted to point group
symmetry, which can be exploited for additional computational gains.
However, in four-component relativistic quantum chemistry the Hamilto-
nian is spin-dependent and it is no longer possible to factorize an spinor into
a separate spatial and spin part. Instead it is possible to use time-reversal
symmetry which will partially recover some of the lost spin-symmetry. The
anti-unitary 4-component time-reversal operator, I, is defined by [29]

K =K'Ko (2.25)

where K is complex conjugation operator and

K'=—i ["y 02} . (2.26)

02 Oy

Alternatively, K can be defined by its action on a fermion function (a spinor)

¢
Kap =a*Ko, K’¢=-¢ acC. (2.27)
The function

A

¢ =Ko (2.28)

2Four identical integrals:

(Pada|rasa) = (Padal|rpss) = (Psas|Tase) = (Psas|Tess)
and 12 integrals vanish
(p,Bqa|7"a5a) = (paQﬁ|7'a3a): (paqa|7'/33a) = (paQa|7'a3,3) =

(pﬁ‘1a|rﬁ3a) = (pﬂth|ra3ﬂ): (PaCI,GVﬁSa) = (paqﬁ|"'asﬁ) =
(psaslrpsa) = (Ppas|rasp) = (Psda|rssp) = (Pags|rasp) = 0.
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and ¢ are denoted a Kramers pair. Throughout this thesis we will work
in a Kramers restricted basis, i.e., in the union basis {{#¢} U {#}}. In this
basis the matrix representation of an one-electron operator, € (e.g., the Fock
operator), which is symmetric under time-reversal

KOK™ =Q, (2.29)
will have the following properties [30]:

qu = qu,

o _ o (2.30)

pq = qp-

If we now define A,, = €2,, and By, = {); we get the following structure of
Q

A B
Q= [—B* A*} , (2.31)
where A = At is a Hermitian matrix and B = —B' is an anti-Hermitian ma-

trix. €2 can be block diagonalized with a quaternion unitary transformation,
U, defined by [31-33]

1 [1 JI
U=— . 2.32
V2 [ﬂ 1] (232)
The transformed €2 is given by
A +Bj 0
t = . .
Uu'Qu = { 0 —k(A+Bj)k} (2.33)

which is clearly doubly degenerate® — this is also known as Kramers’ Theo-
rem [34]. We now define the quaternion matrix for the operator 2 as [32,33]

Qqu = qu + quj = qu + Qprij (2-34)

which reduce the memory requirements and operation count by a factor of
two (a complex N x N matrix reduced to a quaternion 5 x & matrix). Further
symmetry reductions can be obtained as the quaternion matrix, Eq. (2.34),
may reduce to a real or complex matrix depending on the point group sym-
metry (here shown for Dy, and subgroups):

e (', Dy, and Dy: B =0, and A is a real symmetric matrix,

3A +Bj and —k(A + Bj)k are Hermitian matrices related by a unitary transformation,
and thus have the same eigenvalues.
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Table 2.1: Relationship between time-reversal symmetry, Hermiticity and
Kramers basis operators X .

Hermitian operator Anti-Hermitian operator
time-reversal invariant X;;I X
time-reversal variant X, X5

e (5, (5, and Cy,: B = 0, but A is generally a complex Hermitian
matrix,

e () and Cj: both A and B are generally complex,

assuming a totally symmetric operator, for example, the Fock operator.
When a scalar basis set is used, i.e.,

X 0 0 0

La _ 0 LB _ XL Sa_ | O S8 _ 0
X“ - 0 9 X“ - Ou ) X'u, - Xﬁ ) X“ - 0 ) (2'35)

0 0 0 X

such as in the DIRAC [35] program package, the atomic orbital (AO) matrices
(e.g., the one- and two-electron Fock matrices) may also be reduced to real or
complex matrices depending on point group symmetry if single point group
symmetry adapted basis functions are used [33]. The use of scalar basis set
functions, Eq. (2.35), and spin-symmetry (e.g., [ x;*'x>? = 0) allows the
use of non-relativistic integral generators for the calculation of one- and two-
electron Fock matrices and property integrals. The small component basis set
functions, Xﬁ"‘ and Xﬁﬁ , are constructed using kinetic balance [36] in order to
ensure that the kinetic energy is properly represented in the non-relativistic
limit.

It is also possible to put the Kramers restriction directly into the Hamilto-
nian using the relations between matrix elements from Eq. (2.30). Kramers
restricted one-electron operators can be expanded in Kramers basis opera-
tors [30]

Xz =plgtqip,
Xz =p'g+q'p, (236)
Xz =plaFd'p, '
Xz =p'g¥¢'p.
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The sign + depend on the time-reversal symmetry and Hermiticity of the
operators (see Table 2.1, reproduced from Aucar et al. [30]). For example,
the one-electron part of the Dirac-Coulomb Hamiltonian, Eq. (2.23), is an
Hermitian time-reversal invariant operator, hence it is expanded in X;j] op-
erators, as [30]:

5 1 - N
> heeXpy + 5 (h?qX;;Z] + hquﬁ?q) : (2.37)
pq

Note that the summation is over Kramers pairs. Similarly, two-electron op-
erators can be expanded in

gose = (1 + slqu) (1 + 82T7-5> pirlsq  si,80 =1 (2.38)

pq,rs

where the Kramers permutation operators 7, are given by

Ty (') = a'p; T,y (p7q) = —q'p (2.39)

In the Kramers restricted basis we write the Hamiltonian, Eq. (2.23), as
. . 1 . .
a= [hqu+ + 5 (hsekdy + hqu;q)]

1 . _ N A
+3 Z [(pq\rs) ap b+ (Dar,rs) ifah, + (pqlrs) x;qﬁs] (2.40)
pars
1 T ) Py e g At
+ Z Z (pq"l“S) xﬁq,rE + g [(pq\rs) xﬁq,?‘"s + (pQ|7'8) xpcj,rE}
pars

where the summation is over Kramers pairs, and not over four-spinors as in
Eq. (2.23).
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Chapter 3

Average-of-configuration
Open-shell Hartree-Fock

In this chapter we discuss the average-of-configuration open-shell Hartree-
Fock or Dirac-Hartree-Fock method, which is a useful procedure for obtaining
initial orbitals for a MCSCEF or CI calculation.

3.1 Introduction

Since Roothaan’s original paper [1] on the open-shell Hartree-Fock equa-
tions, several approaches to solve the open-shell equations have been pro-
posed. Roothaan described two methods which required one or two matrix
diagonalizations, respectively. Later, McWeeny [2], Guest and Saunders [3],
Faegri and Manne [4], Huzinaga [5], and Hsu et al. [6] all described other
alternative one-Fock matrix methods, and Davidson [7] described an alter-
native two-Fock matrix method. Also three-Fock matrix methods have been
proposed [8]. There also exists iterative gradient-based open-shell procedures
without Fock matrix diagonalization (see [9] and references therein) and it-
erative gradient and Hessian based open-shell procedures (e.g., see [10]).
The most general of these methods is the one by McWeeny [2] which is an
average-of-configuration method, where the energy is averaged over all states
generated by a full CI in each of the active spaces. Also Roothaan’s original
paper [1] and later methods [4,11] are average-of-configuration methods, but
they are all restricted to either only one open shell (Ref. [1] and [4]) or
to a maximum of two open shells of different symmetry (Ref. [11]). The
possibility of having several shells with the same symmetry is of interest for
core-hole states as we will exemplify in Sec. 3.3. Also, McWeeny’s method
is a one-Fock matrix approach, which is convenient as only one Fock-matrix

27
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diagonalization is needed and the orbitals are automatically orthogonal; no
arbitrary orthogonalization procedure for the orbitals has to be invoked as
it is the case with two- and three-Fock matrix methods, as, for example, the
two Fock matrix approach by Visser et al. [11].

The orbitals obtained can be used as start orbitals for CI or MCSCEF,
where they may be better than alternative start orbitals, as another advan-
tage of the average-of-configuration orbitals is that they, in general, do not
have a specific spin symmetry and are therefore not biased towards any spe-
cific state. Therefore, the same orbitals can be used as start orbitals for, for
example, a CI calculation of both a singlet and a triplet state. Furthermore,
the orbitals obtained in an average-of-configuration approach will have the
proper degeneracy. For example, a traditional “one electron in one orbital”
open-shell approach will for boron treat one of the p orbitals as half occupied
and the two others as empty, hence the converged p orbitals obtained will
not be degenerate as the p orbitals are treated differently. In an average-of-
configuration approach a fractional occupation of 1/3 in each of the three p
orbitals could be specified, and the converged p orbitals would, in fact, have
the proper degeneracy.

We derive explicit expressions for the energy, energy gradient, and energy
Hessian, and we also derive the expressions for the Fock matrix which we
believe are optimal.

Finally, we apply our method in the calculation of the energy of CH, in a
core-hole calculation on Cs, and in average-of-configuration orbitals as start
orbitals for MCSCF calculations on Zn and Lil.

3.2 Theory

3.2.1 The Energy

We use the electronic Hamiltonian, Eq. (2.23), given in second quantization

o 1
H = Z hpquq + 5 Z gpq,rspTrqu; (31)
pq D

qrs

where p' and ¢ are the electron creation and annihilation operators, respec-
tively. The expression we derive are valid for both relativistic and non-
relativistic Hamiltonians.

We may classify the orbitals into three classes: the inactive orbitals (dou-
bly occupied), the active orbitals (partly occupied) and the secondary (vir-
tual) orbitals. We will use indices pgrs..., ijkl..., uvzy..., and abed. ..
for general, inactive, active, and secondary orbitals, respectively. Each of the



3.2 Theory

29

orbitals are distributed into a number of shells. Each shell S is characterized
by having Ng electrons in Mg orbitals. Inactive shells have Ng = Mg, active
shells have Ng < Mg, and secondary shells have Ng = 0.

The average electronic energy is given by [2]

!

K K
1 A 1 N
Bw=Y = <0k‘H‘0k> = >~ (DiHIDy) (3.2)

where {|0x)} are the normalized linear combination of configurations which
are solutions to the CI problem. The average energy is the trace of the CI
Hamiltonian matrix and is thus invariant to rotations in configuration space,
i.e. no N-electron basis is preferred for another and we might as well choose
Slater determinants as our basis. To get the energy of the individual many-
electron states present in the average-of-configuration, a CI calculation in the
basis of the Slater determinants can be done. In most cases the dimension
of the CI matrix is small (dimension < 10-100), allowing it to be kept in
memory and diagonalized completely [12].

A shell, S, have Ng electrons distributed in Mg spinors, giving a total of

K states:
Ms
Kq = 3.3
= (%) 3.

where (1\1\{5 ) is the usual binomial coefficient

<%§> ~ Ny (AJZS!_ Nyl (3.4)

The total number of states is given by

K= ];[Ks = ];[ (%g) (3.5)

For example, in one of the simplest cases: one electron in two orbitals:

}:>K:K1:2 (3.6)

The one electron part of the energy

1K
EW = K Z Z haq <Dk‘pTC]‘Dk> . (3.7)

k=1 pgq
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can be reduced to

EW = Z s o, (3:8)

pES

where we have used that <D,c ‘ qu‘Dk> = 0pq if orbital p is occupied in deter-
minant k£, and that only

!H (%If)] - (%5:11) — K- fs (3.9

R#£S

of the original K determinants have p occupied, assuming p € S. fg is the
fractional occupation in shell S:

fs = (3.10)

Analogous we derive the two-electron energy as

E® = EZ (as- f5) Y [(pplag) — (palgp)]

2
e (3.11)
+5 Z (fs. - fs:) > [(pplag) — (palap)],
51#52 ge€Sy
qES?
where we have introduced the coupling coefficient
Mg(Ng—1)
ag = { Ns(Ms—1) for fs #0 (3.12)
1 for fs =0

This allows us to write the total energy as

Bu = B+ B® = Zfs{2<%+%ZQs,;+%<as—1> )}
Sl

peES

with

oa = fs Y (palrr) = (pr|rq). (3.14)

res
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3.2.2 Orbital Variations, the Gradient, and the Hes-
sian

We wish to find stationary value conditions that define the optimal orbitals.
We start by choosing an exponential unitary parameterization, where the
trial function is

0) = exp(—£&) |0), (3.15)

with the orbital rotation operator given by
k= Z KrsT 5. (3.16)
T8

This corresponds to individual orbital transformations

S = dglexp(—K),- (3.17)

As the orbitals are generally complex we expand the energy in both
and K*:

1
E(k,k*) = BV 4 ATEM 4 §>\TE[2])\ +0(X?), (3.18)

where A = [k, k*]" and

K
k=1
OFE
El = [%] (3.19)
aK, A=0
0’E 0’E
[2] _ | Ok*OKk  OK*OK*
E” = 9*E 9*E
OKOK OKkOK* | x_o

El EM and E® is the total energy, the gradient and the Hessian, respec-
tively, at the expansion point. The expansion is constructed such that the
Hessian is Hermitian and diagonally dominant. In the following a super-
script o and o* indicates differentiation with respect to xk and k*, respectively.
Straightforward differentiation yields the gradient

B ==
Fipg

S (o ) - et o

k=0 k=
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and the Hessian

"

E[2]o 0
Dq,TS

’ Ok Kors | __

(3.21)

E[Q]oo —

pq,rs

k=1

— (E[QJO*O*)* ]

pq,rs

Explicitly, we derive the gradient as

gzq =fp {hqp + ZQZ’; + (ap — 1)Q5p} - Jfq {hpq + ZQ}% + (ag — ]‘)Q;?q}
S’ S’

= Fp = (F)",
(3.22)

with p € P and ¢q € (), and where we have introduced the generalized Fock
matrix

Fq?) = fo {hpq + ZQ}% + (CLQ - 1)@;16}2(1} (3.23)
Sl

As the generalized Fock matrix is Hermitian! we immediately see that intra-
shell rotations are zero. The generally non-zero elements are:

e inactive-secondary rotations:

gioa = h’a’i + Z Qgia (324)
Sl
e active-secondary rotations:

Yua = fu {hau + ZQE’; + (av — 1)QaUu} (3.25)
Sl

foru € U,

!Note that this is only the case for Hartree-Fock or average-of-configuration Hartree-
Fock. For MCSCF the generalized Fock matrix is, in general, non-Hermitian.
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e inactive-active rotations:
9 =1~ fv) {h +) Q%+ fUaUQS{Z} (3.26)
SI

for v € U, and

e inter-shell active-active rotations:

o __ _ S’

— (ay = 1) fuQy, — (av = 1) frQyy,
forueUandv eV,
where we have introduced
_ 1—ag
1 fs
In the same manner the Hessian can be derived, but we will only consider
the diagonal

(3.28)

Qs

0*FE

*
Ok Kipq

& (Do [a. 1] [ )
! (3.29)
:(Fq?l_Fp%)_(FPI;_F;;)

+ {(pplag) — (palap)} (1 = dpq) - (fo(ap — 1) + folag — 1)) -

E[Z]o*o _

Pqg,pq

K
k=

k=0

3.2.3 Eigenvalue Equation for the Orbitals

As in closed-shell and open-shell SCF theory it is possible to write the con-
ditions for a stationary value of the energy as an eigenvalue problem, i.e.,
it is possible to find a single Fock matrix that when diagonalized gives op-
timal orbitals for all shells. This Fock matrix must have off-diagonal ma-
trix elements proportional to the orbital gradient [2]. The inactive-inactive,
intra-shell active-active and secondary-secondary rotations are redundant,
and these blocks of the Fock matrix can be chosen arbitrarily. But as the
convergence depends critically on these elements, we have to choose these
carefully.

Let us consider a very simple case, with one inactive shell and one sec-
ondary shell. The Newton step, A, in a second-order optimization is given
as the solution to the linear equations

EZX = —EM, (3.30)
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If we neglect the off-diagonal elements of the Hessian, and if we furthermore
neglect the two-electron terms in Eq. (3.29) the linear equations assume the
following simple form in our simple case:

Faa - E O Kia _ gfa
0 F- F} [»e;-;] = H (3:31)
The solution is
P Y
“ Faa - FL
* gia
= - .32
Fiia F;a - Fj:; (3 ] )
— _ Gia
Faa - Ez

To first order the new orbitals are given by

¢ = pexp(—k) = ¢(1 — k) (3.33)
or
$i = i — Kig¥a
g Ya
v Faa - Ez ¢
Qaa = Qg t Kia¥;

Yia
7@'
Faa - Ez '

The Fock matrix that upon diagonalization gives optimal orbitals is given
by

(3.34)

:(pa+

A Gia
[Qfa B:| , (3.35)

where A and B are some constants we want to determine. Diagonalization
of this matrix gives eigenvalues

A+ B A— B\?
A= AP \/< ) — Gialia (3.36)
2 2
i.e.,
. (3.37)
Aa — B+ gzagm

A-B
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The new eigenvectors ¢**! as a function of the eigenvectors from the previous
iteration are given by (the square root expanded to first order)

_ g
Qi = Qi — @

(paa
A;B (3.38)
¥ =g+ ﬁ%’-

From this we see that we have to choose the diagonal as the generalized Fock
matrix, i.e.,

A:Eia

3.39
B =F, (3:39)
Explicitly, we define the Fock matrix by
Fij = Ff = hij + ZQ%;
Sl
Fi, = FL + ap fuQY, for u € U,
]Fi = F‘z{u
FI + (ay —1)QY, for u,v e U
F,, =< F! + f‘;U__fi/ v o+ f’i/‘/__f; QY forueU,veV,and fy # fv
(ay — 1D)QY + (ay — 1)QY  else
Fuo = FL + (ay — 1)QU,, for u € U,
Fop = F7.
(3.40)

Note that elements corresponding to non-redundant rotations are propor-
tional to the gradient. The rest of the elements are chosen such that the
differences between these resembles the diagonal part of the Hessian.

There are two different ways to construct this matrix given the matrices
h and Q° in MO basis. The simplest is just to calculate the various matrices
in MO basis, and use Eq. (3.40) for distributing elements into F. However,
for convergence-acceleration schemes like DIIS [13,14] it is essential that the
Fock matrix is in a fixed MO basis. The construction of the Fock matrix in a
fixed MO-basis can be achieved by using the normalized density matrices as
projection operators, i.e. the projection operator P° defined by P = fiSDS
(for fs # 0), where D is the density matrix for shell S. In the current MO
basis the projection operator is just a matrix with 1’s in the diagonal for
shell S. The projection operators can be used for selecting specific blocks
of matrix. For example, if D! and DY are the inactive and active density
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matrices, then %D”ADU fLU = PTAPVY will give the inactive-active block
of the matrix A. The Fock matrix, Eq. (3.40), can now be constructed as

F=h+)» Q+L+Lf (3.41)
Sl

with L is given by

L=> P'Q"[avfuP'+ (ay — 1) (PY+P%)] + Y LLY. (342
U VAU

where P!, PZ and PV are the projection operators onto the inactive, sec-
ondary and active orbitals, respectively. Note that the }_;; and >, are
summations over active shells only. The active-active coupling operator,
LYYV is defined by

ac-ac?

L. fu# fv

fr-QV| PV (3.43)

ac-acC

LUV _ pU [L—l.fU.QU_L
U

2. fr=fv <1

it 2~ (ne Do)
SI

(3.44)
+ (v —1)- fu-QV —(ay = 1)- fr - Q" |P”
3. fu = fv =1 (inactive shell defined as an active shell)
LY. =0 (3.45)

The formulas presented are valid for any Hamiltonian. Changing to a
restricted basis, either non-relativistic spin-restricted or relativistic Kramers
restricted, is done by replacing the spinor (spin-orbital) Fock matrix, Eq.
(3.23), with a restricted Fock matrix, for example, a quaternion Fock matrix
in the relativistic Kramers restricted case, as in our average-of-configuration
open-shell implementation in the relativistic program package DIRAC [15].



3.2 Theory

37

3.2.4 The Fock Matrix in AO Basis

The Fock matrix, Eq. (3.40), can also be constructed from the projection
operator matrices and one- and two-electron Fock matrices in the atomic
orbital basis (AO basis). The contravariant projection operator, P*, in AO

basis and the covariant two-electron Fock matrices, Q%, are given by
PS,ao — TPS,moTT o PS,mo — r:[\—l]_:)auor:[\’[_1

(3.46)

QS,mO — TTQS,aOT

where T is the AO-MO transformation. We are interested in products of the
type
PR,mOQS,mOPT,mo — T—IPR,aoTT_1TTQS,a0TT—1PT,a0TT_1
— T‘rsaoPR,aOQS’,aoPT,aosaoT (347)
— (T‘rsao) PR,aOQS,aOPT,aO (TTsao)T
where S2° is the overlap matrix in AO basis, and where we have used TTS2T =
Smo = 1. Where T is a fixed AO-MO transformation the product TS can
be calculated once and reused in every iteration.

The open-shell Fock matrix, Eq. (3.41), can be calculated from AO-basis
Fock and density matrices as

F=Tt <hao + Z QS’ao) T+L+ LT’ (3.48)
Sl
with
L= Z (T’rsao) pUac [OéUfUPI + (ay = 1) (PU + PZ) ] (Tfsao)f

U
uyv
+ Z Lac-ac °
U£V

(3.49)

The active-active coupling operator, LY is calculated analogous to Egs.

(3.43) - (3.45) with PV and P" replaced with (T1S%) PU# and PV (Tts2)",
respectively.

3.2.5 Open-shell and DIIS

In the convergence acceleration scheme DIIS [13,14] an extrapolated Fock
matrix, F&™ is formed as linear combinations of Fock matrices

FM =3 " ¢F;. (3.50)

i<n
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The DIIS-coefficients, ¢;, are found from solution of a linear equation [13,
14] or an eigenvalue problem [16]. For closed shell Hartree-Fock the linear
combination, Eq. (3.50), can be formed in either AO- or MO-basis, since

Fm = Y Fl (3.51)

i<n
= Y ¢TIF"T, (3.52)

i<n
= ) TFeT (3.53)

i<n
= Tt (Z cFI> T (3.54)

i<n
= 1! (hao + ZciQI’i’a°> T (3.55)
i<n

where T is the fixed AO-MO transformation matrix and we have used that
the DIIS coeflicients are normalized to 1: ). ¢; = 1. From this we see that
it is equivalent to form the linear combination in either the fixed MO-basis,
Eq. (3.51), or in AO-basis, Eq. (3.54) or (3.55).

In the case of open shells, we diagonalize the Fock matrix F given in
Eq. (3.40) or Eq. (3.41). Note that F is only defined in MO basis — it does
not exist in AO-basis as the closed-shell Fock matrix does. It is not valid
to calculate the DIIS linear combination of the two-electron Fock matrices,
Eq. (3.55):

Qs = 3" ¢,Q%, (3.56)

i<n

and then construct the Fock matrix, F, from these. The reason is that the
definition of the active orbitals changes from iteration to iteration. The two-
electron Fock matrix, Q%!, from iteration i, is calculated using the density
matrix, D®?, from iteration 7. But we calculate F (Eq. (3.41)) with the
projection operators (i.e., the density matrices) from iteration n. Hence, we
use one definition of the active orbitals to calculate the two-electron Fock
matrices, Q%*, and another definition for the calculation of the Fock matrix,
F. This is inconsistent and convergence slowdown compared to the consistent
approach has been observed! It is essential to form the DIIS linear combina-
tion is the fixed MO-basis. The diagonalization part of the SCF procedure
is: Calculate F in a fized MO-basis using Eq. (3.41); calculate the DIIS co-
efficients; form the DIIS linear combination of the MO Fock matrices from
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this and the previous iterations; diagonalize the extrapolated Fock matrix to
obtain new coefficients; and finally back-transform these to the current MO
basis.

At least one implementation of open-shell DIIS uses the inconsistent sum
of AO Fock matrices (Eq. (3.51)) instead of the correct (and consistent)
summation of MO Fock matrices. Changing their implementation would
give considerably gain in convergence.

3.3 Applications

We present calculations performed with the relativistic program package
DIRAC [15]:

e a non-relativistic open shell calculation on CH, to demonstrate that
orbital degeneracies are destroyed with conventional open-shell proce-
dures,

e and a core-hole calculation on Cesium to demonstrate the use of several
open shells.

e a MCSCF calculation on Zinc where we demonstrate the use of average-
of-configuration orbitals as start orbitals for electron correlation meth-
ods.

Open-shell Calculation on CH

This is a case where the average-of-configuration open-shell procedure has
some advantages over other open-shell procedures. Carbon has two electrons
in the p-orbitals. The p, orbital will participate in the bond to the hydrogen
atom assuming that the molecular bond is along the z-axis. The last electron
can either be in the p, orbital or the p, orbital. Three different open-shell
calculations are possible:

1. 1 electron in the p, orbital (1 electron in 2 spinors)
2. 1 electron in the p, orbital (1 electron in 2 spinors)
3. 1 electron in the p, and p, orbitals (1 electron in 4 spinors)

Due to spatial symmetry the p, and p, orbitals must be degenerate. Cal-
culation 1 and 2 above will destroy this degeneration since we treat the
two p orbitals differently: one is occupied and the other is empty, and vice
versa. In the average-of-configuration calculation (no. 3) both p orbitals are
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Table 3.1: Energies and properties for CH in different open-shell calculations.
The basis set is aug-cc-p VDZ basis set, and the bond length is rey = 2.014 A.

Property/Calculation 1 electron in 1 electron in 1 electron in

2 p, spinors 2 py spinors 4 p spinors
Total energy —38.143846 617 au —38.143846617 au —38.143 804462 au
Dipole moment —10.357118 au —10.357118 au —10.357 288 au
Electric field gradient
q<, 1.107696 au —0.957941 au 0.074778 au
qggy —0.957941 au 1.107 696 au 0.074778 au
q,, —0.149755 au —0.149755 au —0.149 557 au
g 0.008 052 au 0.002 863 au 0.005458 au
qglfy 0.002 863 au 0.008 052 au 0.005 458 au
q —0.010916 au —0.010916 au —0.010916 au

Table 3.2: Shell specification for the ground state of Cs

Shell #electrons # Ei/99 # Eijo0u [ a «
spinors  spinors

Closed shell 54 30 24 1 1 0

Open shell 1 (6s],,) 1 2 $ 0 2

treated similarly making them degenerate. Properties are, of course, also
different for the 3 calculations as seen in Table 3.1. Calculation 1 and 2 yield
the same energy and have related properties due to the rotational symme-
try, whereas calculation 3 have different properties. The differences are not
large for energies and dipole moments, but for the electric field gradients
the difference is huge. By imposing the physically incorrect shell structure
in calculation 1 and 2 we have, in effect, broken symmetry. Note that cal-
culation 3 have the correct symmetry properties for the EFG tensor, and
that ¢f2lc! ~ w. In conclusion, the open shell should contain all

T
symmetry related and degenerate orbitals otherwise wrong result may occur.



3.3 Applications

41

Table 3.3: Shell specification for the 4ds/, core hole state of Cs

Shell #electrons # Eij99 # Eijou [ a «
spinors  spinors

Closed shell 46 22 24 1 1 0

Open shell 1 (4d3,,) 5 6 = 8 20

Open shell 2 (557 ,) 2 2 1 1 0

Open shell 3 (6s1,,) 1 2 : 2

Table 3.4: Relativistic and non-relativistic core hole ionization energies for
Cesium

State Energy/Hartrees Ionization energy/Hartrees

Koopmans ASCF
Relativistic calculation

Ground state -7,786.7535

4ds /2 hole -7,783.7447 3.3025 3.0088

4d3/, hole -7,783.6594 3.2138 3.0941

Non-relativistic calculation
Ground state -7,553.8212
4d hole -7,550.6490 3.3796 3.1722
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4d Core-hole Calculations on Cesium

As mentioned in the introduction the average-of-configuration procedure can
also be used to do SCF calculations on core-hole states. Cesium has the
following electron configuration

15225%22p53523p%3d % 4524p®4d 0552 5p%6 5! (3.57)

In the program package DIRAC [15] only symmetry in Dy, and subgroups
are used. For the D, double group we only have to specify whether orbital
is gerade (symmetry FEj/94) or ungerade (symmetry E/o,). For Cesium we
have s and d as gerade and p as ungerade. The specification of closed and
open shells for the ground state and the 4ds/; core hole state is shown in
Table 3.2 and 3.3, respectively. The specification for the 4ds/, core hole is
analogous to the 4ds/; core hole.

With the 30s25p17d Cs basis set [17] we get the relative energies shown
in Table 3.4. In the table the absolute energy of the ground states and
4d core-hole states are shown as well as ionization energies: the ionization
energy from Koopmaan’s Theorem (the orbital eigenvalue from the ground
state calculation) and the ionization energy as an ASCF value: ASCF =
E(core hole) — FE(ground state). For further comparison also the non-relati-
vistic results are shown in the table. We will not discuss the results as we
have not been able to find any experimental values and as this is just an
demonstration of a convenient way to obtain relaxed core-hole orbitals which
can be used in correlated methods, such as CI or MCSCF. Note that the
relaxation which is included in average-of-configuration ASC'F' value but not
in the Koopmaan’s Theorem value constitutes ~ 10% of core-hole ionization
energy and can therefore, in general, not be neglected.

3.3.1 Average-of-configuration Orbitals as Start Or-
bitals for MCSCF

Finally, we demonstrate the use of average-of-configuration orbitals as start
orbitals for MCSCF.

An often encountered problem using Hartree-Fock orbitals as start or-
bitals for MCSCF calculations is that the lowest virtuals are diffuse orbitals
with eigenvalues close to zero. These orbitals bear very little resemblance
with the converged orbitals, and very slow convergence will often be encoun-
tered. An often used solution is to use the virtual orbitals that diagonalize
the one-electron Fock matrix (so-called hj-virtuals) or the core Fock matrix
(h+QY; so-called F¢ virtuals) [18], as the correlating orbitals will be shifted
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down in energy whereas the diffuse virtuals will not be shifted. The prob-
lem associated with this procedure is that core-correlating functions will be
shifted most downwards, and consequently put in the active space instead of
the valence-correlating orbitals we are after. As the correlation energy from
correlating the core is larger than from correlating the valence they will not
be shifted out of the active space during the MCSCF iterations. This can of-
ten be a problem with calculations on heavy atoms where large uncontracted
basis set are often used.

The best start orbitals are probably MP2 natural orbitals. MP2 natural
orbitals sorted after occupation will almost always ensure that the correct
correlating orbitals are put in the active space. The only problem associated
with this procedure is that MP2 is a n° method, and may be time-consuming
for extremely large basis sets in relativistic calculations.

As we will demonstrate with a few examples the average-of-configuration
orbital can also be used as an economical alternative to MP2 natural orbitals
or if MP2 natural orbitals are not available?.

The first example is the Lil calculations presented in Sec. 6.2. The basis
set is the Sadlej polarized basis set [19-21] for both Li and I, with an inactive
space of 25 orbitals and 8 active orbitals (the iodine 5p orbitals, the lithium
2s orbitals, and the correlating iodine 5d orbitals). Three different options for
start orbitals were used: (i) canonical Hartree-Fock orbitals, (ii) h;-virtuals,
(iii) average-of-configuration orbitals with three shells: (1) 25 orbitals with
occupation 2, (2) 8 orbitals with occupation 6/24, and (3) the rest with zero
occupation, and (iv) MP2 natural orbitals. The convergence (the norm of the
gradient as a function of macro iteration number) is given in Table 3.5 along
with the final energy. The MCSCF natural orbital occupation numbers and
the character of the correlating orbitals are given in Table 3.6. It is fairly
obvious that with h;-virtuals the calculation converge towards the “wrong”
state. The character of the orbitals is not clear, but it appears to be 3d
and 4d orbitals. The MP2 natural orbitals are better than the average-of-
configuration orbitals which takes six extra macro iterations to converge.

The second example is the Zn calculations presented in Sec. 6.1 where
the basis set can be found. The inactive space consists of 15 orbitals; the
active space of 3 orbitals (the 4s and the 4p orbitals). Again, we give the
convergence and final energy (see Table 3.7) and the MCSCF natural oc-
cupation numbers along with the character of the correlating orbitals (see

2MP2 natural orbitals is currently not available as start orbitals for MCSCF calculations
in DIRAC, although work is in progress to implement the necesary relaxed density matrix.
When finished it would be trivial to write code for the diagonalization of this in order to
obtain the transformation matrix for the transformation of the Hartree-Fock orbitals to
the MP2 natural orbitals.
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Table 3.5: Convergence (the norm of the gradient) and the final energy for
MCSCEF calculations on Lil with different start orbitals. Macro it. denotes
the macro iteration number in the iterative MCSCF procedure. The norm of
the wave function gradient is given for each iteration for all four calculations
with different start orbitals.

Macro it. Norm of gradient
canonical HF hi-virtuals ave HF MP2 NO
1 0.00192366 0.00137246 0.51395088 0.04680032
2 0.04193461 0.22562982 0.11452665 0.00648735
3 0.11413820 0.26825093 0.05945663 0.00007483
4 0.05511344 0.18992990 0.02350915 0.00000584
5 0.05856350 0.33028791 0.00264172
6 0.05247107 0.55865076 0.02934558
7 0.07454871 0.52323206 0.03804216
8 0.01525625 0.26976738 0.00368056
9 0.03836895 0.11399215 0.00009210
10 0.08173234 0.07051797 0.00000333
11 0.16621349 0.10944294
12 0.07260808 0.00646455
13 0.05070718 0.02465693
14 0.01491729 0.00070628
15 0.01185715 0.00006390
16 0.01107484 0.00000330
17 0.00900968
18 0.00016823
19 0.00000744

—6925.39341064

Final energy
—6925.34546245

—6925.39341063

—6925.39341063




3.4 Conclusion

Table 3.6: MCSCF and MP2 natural orbital occupation numbers and char-
acter of correlating orbitals for Lil, given in parentheses after the occupation
number.

Orbital no. Start orbitals
canonical HF  h;-virtuals ave HF MP2 NO

1 1.95769 (5p) 1.99962 7 1.95769 (5p) 1.95769 (5p)
2 1.95769 (5p) 1.99962 7 1.95769 (5p) 1.95769 (5p)
3 1.95838 (5p) 1.99960 7 1.95838 (5p) 1.95838 (5p)
4 0.02213 (5d) 0.00039 ? 0.02213 (5d) 0.02213 (5d)
5 0.02213 (5d) 0.00037 ? 0.02213 (5d) 0.02213 (5d)
6 0.02196 (5d) 0.00037 ? 0.02196 (5d) 0.02196 (5d)
7 0.01962 (5d) 0.00001 ? 0.01962 (5d) 0.01962 (5d)
8 0.01962 (5d) 0.00001 ? 0.01962 (5d) 0.01962 (5d)
9 0.00704 (6p) 0.00001 ? 0.00704 (6p) 0.00704 (6p)
10 0.00704 (6p) 0.00000 ? 0.00704 (6p) 0.00704 (6p)
11 0.00672 (6p) 0.00000 ? 0.00672 (6p) 0.00672 (6p)

Table 3.8). We have also used F¢-virtuals. Again, the hi-virtual calcula-
tion collapses, and this time the 1s orbital are correlated! The other cal-
culations converge, although with canonical HF orbitals the convergence is
slow compared to average-of-configuration and MP2 natural orbitals. The
FC_virtuals are clearly better than hi-virtuals, and even better than the
average-of-configuration orbitals.

3.4 Conclusion

We have presented a one-Fock matrix theory for average-of-configuration
calculations. Although our formulae were derived independently they turned
out identical to the formulae of McWeeny [2]. The formulas derived are valid
for any number of open shells with arbitrary symmetry, and the orbitals
obtained can be start orbitals for correlating methods, such as CI or MCSCF.
We have also demonstrated the usability of the method in normal open-
shell SCF calculations; in fact, averaging is required for some open-shell
calculations such as on CH. We have also demonstrated that the method
can be used for obtaining core-hole orbitals and that they can successfully
be used as start orbitals for MCSCF calculations when MP2 natural orbitals
are not available. Furthermore, we have discussed some important issues of



46

Chapter 3 — Average-of-configuration Open-shell Hartree-Fock

Table 3.7: Convergence (the norm of the gradient) and the final energy for
MCSCEF calculations on Zn with different start orbitals. Macro it. denotes
the macro iteration number in the iterative MCSCF procedure. The norm of
the wave function gradient is given for each iteration for all four calculations

with different start orbitals.

Macro Norm of gradient
it. can. HF hq-virt. FC_virt. ave. HF MP2 NO
1 0.011234 0.000034 0.014531 0.108854 0.011412
2 0.015900 0.141201 0.003568 0.046614 0.001198
3 0.031116 0.006870 0.000039 0.003698 0.000004
4 0.001527 0.031431 0.000002 0.000233
5 0.000033 0.137820 0.000001
6 0.000003 0.608407
7 0.056468
8 0.011593
9 0.000102
10 0.000004
Final energy
—1777.872242 —1777.861071 —1777.872242 —1777.872242 —1777.872242
Table 3.8: MCSCF orbital occupation numbers and character of correlating
orbitals for Zn, given in parentheses after the occupation number.
Orbital no. Start orbitals
can. HF hq-virt. FC-virt. ave HF MP2 NO

1 1.8781 (4s) 1.9999 (1s) 1.8781 (4s) 1.8781 (4s) 1.8781 (4s)
2 0.0406 (4p) 0.0000 (p) 0.0406 (4p) 0.0406 (4p) 0.0406 (4p)
3 0.0406 (4p) 0.0000 (p) 0.0406 (4p) 0.0406 (4p) 0.0406 (4p)
4 0.0406 (4p) 0.0000 (p) 0.0406 (4p) 0.0406 (4p) 0.0406 (4p)
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open-shell DIIS.
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Chapter 4

Relativistic Four-Component
MCSCF Theory

In this chapter we review the formalism for the Kramers restricted relativistic
four-component multi-configurational self-consistent-field method originally
presented by Jensen et al. [1] and present an KR-MCSCF implementation
based on the quaternion formalism by Saue and Jensen [2].

4.1 Introduction

We present the implementation of the KR-MCSCF method. The formalism
and implementation have the following properties:

Relativistic four-component As we have established in Chapter 1 we
need to account for relativistic effects in order to have a qualitatively
correct description of compounds with heavy elements. Relativity is
also needed for extremely precise calculations on compounds contain-
ing only light elements. Furthermore, a relativistic description may
be preferred for description of magnetic properties. For many pur-
poses it is preferable to use four-component methods instead of one- or
two-component methods, as the four-component methods have a very
simple formalism, where all the approximate one- and two-component
operators — the Hamiltonian as well as property operators — have to
be transformed in order to avoid picture-change effects [3].

Kramers restriction This is the relativistic analogue to the spin-restriction
employed in most non-relativistic methods. We base the implementa-
tion of the Kramers restriction on the use of quaternions [2] and time-
reversal symmetry adapted basis operators X* [4].

ol
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Second order restricted step optimization The energy is expanded to
second order, and the Newton-Raphson equations are solved until a
stationary point has been reached. The second order expansion of the
energy is only trusted with in a hyper-sphere and the Newton step is
therefore restricted. With the use of the restricted step algorithm, in
practice, sharp and well-controlled convergence is always obtained.

Direct algorithm The Newton-Raphson equations are solved in an itera-
tive direct manner. This is essential for large-scale MCSCF calculations
where the Hessian is too large to be stored or inverted. The most CPU
and memory demanding step is the calculation of CI sigma vectors and
the storage and calculation of molecular integrals.

The direct second order restricted step optimization is completely analogous
to the non-relativistic MCSCF method in DALTON [5] developed by Jensen
et al. [6].

4.2 Operators and Symmetry

The starting point is the second quantization relativistic four-component
Dirac-Coulomb operator from Eq. (2.23):

3 1
H = Z hpquq + 9 Z gpq,rspTTqu, (4.1)
pq

pgrs

where the matrix elements are given by:

hq = (p|o]a)
pe = \P|RP| (4.2)
9pg,rs = (pr|gizlgs),

where hp is the Dirac one-electron operator given in Eq. (2.6), and gy is the
Coulomb part of two-electron interaction operator, Eq. (2.12).

It is possible to build time-reversal symmetry explicitly into the formal-
ism by changing to a Kramers basis [4]. A time invariant Hermitian or
anti-Hermitian one-electron operator are purely expanded in Kramers single

replacement operators X ° or X, respectively [4]:

£ _ b4 Als
Xy, =0'q£q'D,
X =0p'qFqp, (4.3)

R .
Xps =DP'qF ¢'D.
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For example, the Hermitian Dirac one-electron Hamiltonian, Eq. (2.6), which
is time-reversal invariant in the absence of magnetic interactions, is found to

be

- 1
hp=)_ [hqu;;] +5 (hpg X + hqu,j;j)} : (4.4)

rq

For two-electron operators it is necessary to use Kramers double replacement
operators, Eq. (2.38), and in the Kramers basis, {p}U{p}, the Dirac-Coulomb
Hamiltonian can be written as

~ ~ 1 ~ ~
H= Z [thX;z + 5 (hﬁqX;—q + hqu:&)}
Pq

1 . _ N A
5 3 [(walrs) @t + (ar,rs) a5+ (alrs) 3| (45)
p

qrs

I, . . 1. o
+ 7 2 Balrs) gl + < [(Bal7s) 23,5, + (pl75) ']
pars

where summations run over orbitals, and not spinors as in Eq. (4.1).

However, there is a downside to using Kramers single and double replace-
ment, operators; namely the algebraic manipulations to evaluate the single
and double commutators present in the expressions for the electronic gra-
dient and Hessian (e.g., see, Section 3.2 in Ref. [7]). Instead, it is possible
formulate a Kramers restricted method by using the quaternion formalism
briefly mentioned in section 2.3 without ever introducing the X* operators
explicitly. We will, however, stick with the X* operators, and introduce the
quaternion formalism at a later point.

Time-reversal symmetry is also present in the structure of the matrices.
For example, a Hermitian time-reversal invariant operator, €2, has the fol-
lowing structure in a Kramers basis

o— (5 n) (49

where A and B are Hermitian and anti-symmetric matrices, respectively.
From Eq. (4.6) it is evident that some of the matrix elements are redundant.
As we saw in Section 2.3 a suitable way of saving only the non-redundant
elements is by introducing the quaternions, and defining

Qe = Qg + gl (4.7)
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4.3 Parameterization and Orbital Classes

The KR-MCSCF wave function in iteration £ is given by

By =3 "B |®,), (4.8)
17

where the sum is over all configurations included in the CI expansion. The
configurations could be Slater determinants built from the molecular 4-com-
ponent Kramers orbitals or they could be configuration state functions (CSFs)
which are linear combinations of Slater determinants adapted to time-reversal
symmetry and/or point group symmetry. It is preferable to use CSFs as the
converged state will have a well-defined behavior under the time-reversal
operation and under point group symmetry operations. The use of CSFs
can also reduce the work needed to calculate CI sigma vectors and in some
cases it can reduce the length of the expansion. This is most evident for
non-relativistic or spin-free CI expansions where a spin adapted basis can be
used as spin is a good quantum number. For relativistic CI expansions with
an even number of electrons, it may be advantageous to form a CSF basis of
plus and minus combinations of determinants (see, e.g., Messiah [8]).

The orbital belongs to one of four classes: positron orbitals, inactive
orbitals (doubly occupied in all determinants), active orbitals (partially oc-
cupied), and secondary orbitals (unoccupied orbitals). We treat the positron
orbitals as secondary orbitals as suggested by Mittleman [9] and converge
towards the desired electronic state by employing a mini-max principle [10],
in which the energy is minimized with respect to electronic orbital rotations
and maximized with respect to positronic orbital rotations. Note that the
presented KR-MCSCF method is the most rigorous correlation method as we
allow the positronic orbitals to relax, hence in each iteration the Mittleman
projection operators onto the electronic states changes analogous to DHF. It
is, of course, also possible to neglect the rotations of the positronic orbitals
— the e — p relaxation — as done in relativistic no-pair CI, MP2, and CC.
However, the e — p relaxation may be important for core operators, magnetic
properties (spin-spin couplings [11]) or operators that depend critically on the
small component density (parity violation). Unlike non-relativistic MCSCF
optimizations where all orbital rotations become redundant in the limit of
full CI, only the electronic orbital rotations become redundant in relativistic
optimizations; positronic orbital rotations are still non-redundant.

The electronic classes (inactive, active, and secondary orbitals) are anal-
ogous to the corresponding classes found in non-relativistic MCSCF theory
(see, e.g., Jensen [6]).
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The configuration basis functions (|®,)) are defined by how the active
electrons are distributed among the active orbitals. The most general is the
Generalized Active Space expansion [12] where all possible electron distri-
butions of the active electrons into the active orbitals, under occupation,
Kramers symmetry, and double group symmetry restrictions, are considered.
The active space is divided into n active spaces, each having occupation con-
straints: a minimum and maximum number of electrons. An example of a
GAS wave function is the “traditional” Restricted Active Space (RAS) [13]
wave function where the active space is partitioned into three active spaces:
RAS1, RAS2, and RAS3. For RAS1 and RAS3 both a minimum and a max-
imum number of electrons are given, where as the distribution in RAS2 is
defined by conservation of the number of active electrons in the system. An-
other example is the Complete Active Space (CAS) wave function which is
a GAS wave function with full CI in only one active space.

These different wave function types (GAS, RAS, and CAS) are completely
analogous to the non-relativistic ones, except the the non-relativistic spin and
single point group symmetry restrictions are replaced with Kramers symme-
try and double group symmetry restrictions. For a graphic overview of the
different wave functions see Figure 4.1.

The KR-MCSCF wave function is defined completely by the configuration
coefficients c,(f) and the occupied (inactive and active) orbitals. We choose
a parameterization where the orbital variations are parameterized using an
exponential unitary parameterization, exp(—k&), and the variations of con-
figuration coefficients are parameterized using a correction vector, ¢, which
is orthogonal to the current configuration vector ¢*). This is analogous to
the parameterization used in Ref. [14]. Thus, the parameterized KR-MCSCF
wave function is:

[MC(8, k)) = exp (=£) [0)
™)) + P [5) (4.9)

= (R =y

We have assumed that the reference configuration vector for iteration k£ is
normalized, i.e.,

(c®]c®y = 37 ()" ¥ = 1. (4.10)
u

The correction vector

|0) = Z(Su |Pp) (4.11)
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CAS RAS GAS
Secondary Secondary Secondary
GASn
GAS5
RAS3 GAHA
CAS

GAS2

RASL
Inactive GAS1

Inactive
Inactive

Figure 4.1: Overview of the division of orbital spaces for the complete active
space (CAS), restricted active space (RAS), and the generalized active space
(GAS) wave functions. The secondary space may also include the positronic
orbitals.
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is an arbitrary correction to the reference configuration vector, and the pro-
jection operator

P=1—[c®) (™ (4.12)

annihilates any ‘c(’“)> component from the correction vector. Note, that
there is a redundancy in the configuration space as a correction vector |0) =
a |c(’“)> t,a € C would not change the wave function. This extra redundant
parameter is related to the norm of the wave function and it can be used
in the complex generalization of the norm extended optimization (NEO)
algorithm [1].

The exponential unitary operator, exp(—#), is the time-reversal invariant
unitary operator [4]

= (/@TSX_ + ks X — KX — K X-_> (4.13)

The variation of the complex parameters {x,s, k;,} corresponds to all pos-
sible unitary orbital rotations as the X, and X , operators are generators
of proper unitary rotations. As in non-relativistic theory this parameteriza-
tion is chosen as it ensures that the orbitals are orthonormal and that the
Kramers pairing is imposed in the variational space, allowing us to use un-
constrained optimization techniques. Only non-redundant rotations, ¢.e. the
rotations that does not change the energy, are included in the parameter-
ization. Positronic—positronic, inactive—inactive, and secondary—secondary
rotations are always redundant, since the energy is invariant with respect to
these rotations as all their derivatives vanish. The active-active rotations are
also redundant for CASSCF wave functions. For GASSCF wave functions
the intra-shell active—active rotations are redundant, whereas the inter-shell
active-active rotations are generally non-redundant depending on the actual
specification of the calculation. It is important to include only non-redundant
parameters as the Hessian otherwise will have zero eigenvalues, which may
slow down convergence. For further discussions about redundant orbital ro-
tations are how to identify them, see, e.g., Jorgensen and Simons [14] or
Shepard [15].
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4.4 Second Order Expansion of the Energy

A second-order optimization is based on a second order Taylor expansion of
the total energy. In relativistic theory the energy is a real function of com-
plex variables, as opposed to non-relativistic theory where the energy is a real
function of real variables. Hence our variation space is [:%, 52| instead of
[a_r + 8%}. a% and ar* must be regarded as two independent variables. An
alternative, but equivalent, parameterization is [?R(a%), %(a%)} The param-
eter space [F, I'] = [4, k, 8", k*] consists of the configurational and orbital
parameters. For some parameter point A = [[', T'*] = [d, k, 6", k*] the energy

can be written as

E(\) = E(I,T%) = <MC(5,H)‘I§I‘MC(5,&)>
) (4.14)
= 56,87

where the enumerator € is given by

€(0,k,0",K") = < —|—5T‘exp Hexp( )‘c(k) +T5>

N 1 N
— { k) ; il P S el c®)
—<c +5T‘H+[/€,H]+2[/§, [m,HH-ﬁ- c +(5fP>
(4.15)
and the denominator by
* (k) (k)
5(8,6%) = (™ + 5T‘exp i) exp ( ‘c + P5) (4.16)

=1+ (6|P|6).

As the integrals in each iteration always are transformed to the current molec-
ular orbitals the CEP is represented by the null vector A = [0000]". The
second order Taylor expansion of the energy in the independent variables ¢,
0*, k, and Kk* is given by

q(A) = E9 4 ATEY + ATERIX (4.17)

where A = [T, T*] = [§, K, 6%, k*| is the step vector, E[¥ is the total energy,
E! is the gradient, and E[ is the Hessian calculated at the current expansion
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point

H

]
I

<c(k) C(k)>

roE
E[l] _ 81“*]
A=0

E
2z (4.18)
r 9’E 9’E
E[Q] __ | or*or  or*or+
9B QB '
L oTor aror* 4 x=o0

We use superscripts o, 0%, ¢, and c¢* for denoting which component of the
gradient or Hessian we are evaluating; for example, E[1°" denotes the first
derivative of the energy with respect to k. Straightforward differentiation
yields the gradient evaluated at A =0

. OE A .
1le* _ _ k 0] (k) _ 1]e

Bl = % " <<I>N‘H‘c( >>—E[ le#) = (Ellk)",
OE . .

Bl = o—| = —<c<’€>HX;,H] c(k)> — (El)", (4.19)

PgIXN=0

[1]o* oF k S— B\ [1]o *
B = 5| = (< |[Xa B]|e) = (BF)

[1]o
TS

The last line (EY") is obtained by simply replacing s with s in E
Differentiation of the energy twice yield the Hessian at the CEP

’E ’E
0 and 4

EIREI arar- locks:

e From the

% 82E A * *
2lc*c _ _ _glls  _ (gl k) (k)R lile
Bl2le = 5500, _<<I>u‘H‘<I>,,> B, (EH B 4 WE] )
A=0
2]ec*\ *
= (B
* 82E gl ~ *\ X
El2lco _ — <q> [X— HH (k)> _ Jmglle — (g2l
IS 065,08 | g HEEe E B = Bl )
* 82E o o) ~ *\ ¥
2lo*o __ _ k - - k _ 2]oo
R e o N (e®|[Rps Ry, B][e) = (BE2)

(4.20)
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0*E 0’E

e From the S0 o0 and 3Cor blocks:
* % 82E
E[Z]c [ —0= E[Z]cc
o 6528‘575 A=0 m
2
gleo — _O°F - <q> ‘ [ X- H} ‘c<k>> — b (BL)T = (Bl
n,rs 35,’13"6?5 o 15 ST W s u,rs
* % 82E 2, 2, al *
2]o*o* __ _ k - — k _ 2]oo
B = ] = (][ %5 ] o) - (B

(4.21)

4.5 The Restricted-Step Second-Order Opti-
mization

The restricted-step second-order optimization algorithm is based on the com-
parison between the predicted energy change based on Eq. (4.17)

1
Ag(A) = g(A) — B = Xig + 5>JfH'>\, (4.22)

where we have introduced the notation g = PEl = Ell and H' = PEP?P,
and the actual energy change

AEA) = E(A) — E% = Ag(A) + RD(N). (4.23)

When the remainder R () is negligible compared to the predicted energy
change Agq(A), i.e.

_AE(X) . RO
= agn) Ay 424

()

is close to unity, second-order expansion of the energy can be trusted to cor-
rectly describe the structure of the parameter surface. The step is therefore
restricted to a region

||>‘|| S Ttrust (425)

where (we hope) the second-order Taylor expansion is an acceptable approx-
imation to the energy. 7., is denoted the trust radius. The task is to find
the point in space such that the Hessian, H’, has the correct structure and

)
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Eq. (4.25) is fulfilled. If the Hessian is non-singular there always exists such
a solution, and it can be written as

A=—(H —uI) 'g, (4.26)

with a specific, unique value of the level shift v. The optimal step can either
be the Newton step,

A=-Hg, (4.27)

(i.e., v = 0), or a point on the boundary of the region ||[A|| < s, that is, v
assumes a value which makes || A]| = ryust- In a non-relativistic optimization
ground state optimization v would be in the interval from —oco to the low-
est eigenvalue of the Hessian. As we in relativistic ground state optimization
have to maximize the energy with respect to positronic parameters and mini-
mize the energy with respect to electronic parameters (the mini-max principle
mentioned in Section 4.3) we choose v such that the Hessian have exactly
M negative eigenvalues, where M is the number of positronic parameters in
the optimization. This point is actually a Mth order saddle-point, and the
restricted-step algorithm does not guarantee convergence towards this state
as it does for non-relativistic ground-state optimizations [16], but in practice
convergence is always obtained due to the big gap (~ —2mc?) between the
highest positronic eigenvalue and the lowest electronic eigenvalue.

The linear equations, Eq. (4.26), are solved with an iterative algorithm
such as the complex generalization of the Davidson algorithm [17] where the
solution is expanded in a set of trial vectors

A=) b, (4.28)
J

where ¢; are found by solving the projected linear equations
(H* — vI) e = —g&, (4.29)
with

H};‘- = VTHIVJ'

=vlo;, (4.30)
g =vle

New trial vectors are added until sufficient convergence has been obtained.
Note, than in order to implement the mini-max principle efficiently the trial
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vectors, b;, must only have non-zero elements for either the electronic param-
eters or positronic parameters: To converge towards the electronic ground
state we select the level shift, v, such that the reduced Hessian, Eq. (4.30),
has M negative eigenvalues and N positive eigenvalues, where M and N
are the number of positronic trial vectors and electronic trial vectors, re-
spectively. Just as in the non-relativistic case it is also an computational
advantage to split the electronic trial vectors into pure configurational and
pure orbital trial vectors [18]. Thus, we have three kinds of trial vectors:
(i) pure configurational trial vectors, b, (ii) pure electronic orbital rotation
trial vectors, b, and (iii) pure positronic orbital rotation trial vectors, b?.

4.6 Direct KR-MCSCF

There are two levels in a the direct KR-MCSCF algorithm: (i) the macro
iterations, where we walk towards the desired stationary point with g = 0
with steps defined by Eq. (4.26), and (ii) the micro iterations for the iterative
solution of the linear equations defined by Eq. (4.26) which yields the optimal
step, A, for this macro iteration. For large scale KR-MCSCF calculations it
is essential to solve Eq. (4.26) iteratively as it is not feasible to calculate the
Hessian explicitly. The solution to the linear equations are found by means
of linear transformations

O'j = H,bj, (431)

for a trial vector b;, without setting up the Hessian, H’, explicitly. Inserting
the definition of H' we get

From this we see that the projection can be achieved implicitly by selecting
trial vectors orthogonal to the CEP and by explicitly projecting out the CEP
from the sigma vector:

Each calculation of one or more linear transformations defines one micro
iteration towards the desired solution of Eq. (4.26). The linear transforma-
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tion, Eq. (4.33), can be written as

(4.34)

/E[Q]c*c E[2]c*o E[2]c* c* E[2}c* o* b¢
E[Z]o*c E[Z]o*o E[Q]o*c* E[2]0* o* be
= E[Q]cc E[2]co E[2]cc* E[Z]co* X b¢
\ E[Q]oc E[Q]oo E[2}oc* E[Q]oo* 'bo’k

We only consider the formulas for o¢ and ¢ as the remaining two blocks ¢
and o are the complex conjugate of the first two. Explicitly, the blocks of
the sigma vector is given by [1]:

e Configurational contribution to of;:

Z [ELQJC*Cbi + El[f';c*c* (blcj)*}

= (0[|B) — B, — (g5)" (ci) + cu (92H5)
= (0| B) - BV, (4.35)

where we have used that ¢'b = 0 and that we project out ¢ from the
sigma vector o°.

e Orbital contribution to aﬁ:

> [ BRI b, + BP0 + B b+ ELS b

TS TS
r>s

= (| f1]0) = cu (9205, + g7b5s)
- <u‘ﬁ1‘0> (4.36)

where we again have used that we project any ¢ component out of the
sigma vector o®.

e Configurational contribution to o
> B v + B @)
= (G5)" = (5)" D[l + e (8)7]

= (32,)", (4.37)

q-
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where we have used that cfb = 0.

e Orbital contribution to ogq:

Z[E[]oobo _+_E[]oobo +E[2]Oobo —{—E[]Oobo}

pg,TSs Urs pq,TS pq,rS Vrs pq,rs
r>s

~o \* 1 o \* 0 \* 0 0
G+ YT )+ (i) — gt — gt (439

T

Eq. (4.38) is a standard orbital gradient
3o = — (0| [X50, ] |0). (4.39)

with a one-index transformed Hamiltonian defined by

N 1/~ ~ A
A=Y [h X+ 3 (hﬁqx,;l + hpqxpg)}
pq

+ 5 Z [ (palrs)i;sh + (Par,rs)izsh, + (palrs) pq\rs} (4.40)
1”17'5
A+ e I A e
+ - Z pq\rs pq s +3 |:(pq|7n8) pq TS + (pq\Ts)quT-] ’
quS
with
hpg = [(85:hrg — hprbSy) + (B5eheg — hprbS,)] (4.41)
and

(pq|7s) = (Palrs) + (pg|7)

- Z (bpe (tg|75) — (pt|75) big + by (tqrs) — (pt|r5) bsy) (4.42)

+ Z rt (Pg[ts) — (pg|7t) bis + bri (pg|ts) — (pg|7t) bss) -

Various barred and unbarred elements are obtained by simple substitutions
p — p. The transition gradient g is also a standard orbital gradient

?13;:<0H P ”B> <BH P ”0> 4.43
BY = _bilu). "
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evaluated using a symmetrized transition density matrix. Eq. (4.35) is a
standard CI sigma vector and Eq. (4.36) is a standard CI sigma vector with
the one-index transformed Hamiltonian H also used for the one-index trans-
formed gradient.

The sigma vector is now expressed in terms of gradient elements and CI
sigma vectors. Thus, one linear transformation is equivalent to calculating
one CI sigma vector and one orbital gradient — ¢.e., equivalent to calculating
one KR-MCSCF gradient, where “equivalent” means that we need the same
number of CI sigma vectors and Fock matrices. However, for the KR-MCSCF
gradient we will need (galaa) MO integrals (one general and three active
indices), but for the orbital part of the orbital sigma vector we will need
(g99]aa) and (ga|ga) integrals. Hence, it will be possible to do a KR-MCSCF
calculation if it is possible to do the corresponding CI calculation and if it is
possible to calculate and store the (gg|aa) and (ga|ga) integrals.

4.7 Orbital Gradients

In this section we will evaluate the orbital gradients needed for Egs. (4.19),
(4.39), and (4.43). We start out with the electronic gradient, Eq. (4.19):

g = B = (0| [ x5, 1] |0). (4.44)

Using the identity

(4.45)

it is possible to rewrite the gradient in terms of so-called generalized Fock
matrices or MCSCF Fock matrices

9pg = Fop — I, (4.46)

pg’

where F is the generalized Fock matrix defined by

F, = <0‘pT [q, H} ‘0> + <0‘p* [q—, H} ‘o>* . (4.47)
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The elements of the generalized Fock matrix can be evaluated using the
commutator relations for the X* and 2%+ operators. The result is

Fp= Z (D hgr + Difzher)

Z P;tt (qr|st) + Pp_:‘—:t (QHStﬂ

rst

+5 Z [prfgt (q75t) + P (ar|st) + Porly (ar[st) + P2 (qusf)},
rst

(4.48)

where we have introduced the time-reversal invariant one- and two-electron
Kramers reduced density matrices

Dy, = (0[%5:]0). (w19)
Prors = (0]2507]0) -

Expressions for the quaternion elements, F5, can be found by substituting
p— pand p — —p.

The elements of both the one-electron and two-electron density matrices
are trivially zero if any index is secondary (electronic virtuals or positronic
orbitals). Hence, only density matrix elements involving inactive or active or-
bitals can be non-zero. The only non-zero elements involving inactive indices
are

D = 26,
sz;js = 26;,D;, — 6;sD;}, — 6D . (4:50)

and elements obtained by particle interchange, complex conjugation, or by
operating with the time-reversal operator on the above elements. From the
elements above we see that only one-electron density matrix elements with
both indices active and two-electron density matrix elements with all four in-
dices active have to be calculated and stored explicitly, since all other density
matrix element are either zero or given by the formulas above (Eq. (4.50)).

Using Eq. (4.50) it is possible to calculate F, for any combination of
inactive, active, and secondary indices:

Fpi=2(Fy; +Fy),
Fpy =Y (DwFf + DuaFG) + FS, (4.51)

u

Fp =0,
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where we have defined the inactive, active, and auxiliary Fock matrix, re-
spectively:

FS = hyy + Z 2 (pq|7) — (pilia) — w71 70)]

Fp‘; = Z Dy, [(pg|uv) — (pv|ug)] + Z Dy [(pg|uv) — (pv|ug)]

uv

+ ) Dus [(pg|u) — (p9|ug)] + Y _ Das [(pq|av) — (polug)]

uv uv
Fp% - Z [Pp—iz—::;y (qulzy) + Pp—%:;y (quy)]
vTy
+ Z [Pp;}y (qv|zy) + Pptij;? (qv|zy) + ij;j:—fy (qlay) + ij;j;—ug (qv|xﬂ)] '
vTY

(4.52)

The expressions with various barred and unbarred indices can as before be
found using simple substitution.

The expressions for the one-index transformed gradient, Eq. (4.39), and
the transition gradient, Eq. (4.43), can be derived analogously. Explicitly,
the one-index transformed gradient is given by:

Fo =2 (ES+Ey),
Fro =Y (DuFS + DwFS) + FS, (4.53)
=0,

where we have defined the inactive, active, and auxiliary one-index trans-
formed Fock matrices which are identical with the normal Fock matrices
except that the normal integrals are replaced with their one-index trans-
formed analogues (Eqs. (4.41) and (4.42)). The transition gradient is given
by:

Fpi == 2Fp‘z(’
By =" (DuFS + DuaFQ) + FQ

pv vUT pu U= pu pq’ (454)
F,.=0,

where we have defined the active and auxiliary transition Fock matrices,
which are are identical to the normal Fock matrices except that the nor-
mal density matrices are replaced with the symmetrized transition density
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matrices

Dy, = (01X, B) + (B| X[, 0,

v v

Puvay = (0123, B) + (Bli,, 0)

UV, TY uv,TY

(4.55)

Note that there is no chq contribution to F’pi as the CI trial vectors b are
orthogonal to the CI reference vector c. The expressions for with various
barred and unbarred indices can be found using simple substitution.

4.8 Quaternion Orbital Gradients

All orbital quantities from Section 4.6 can be reformulated using the quater-
nion formalism. For example, the quaternion gradient, Eq. (4.46), is defined
by

Qgpq = 9pq + gp(jj
=(Fp—FE) + (Fp—F))J (4.56)
=9F, - “F,,.

Completely analogous to Eq. (4.51) for the generalized spinor Fock matrix,
the quaternion generalized Fock matrix is defined by

QFpi =2 (QFP€+QFP‘;) )
Uy = 3 DG + 903 s

pv?
®F,, =0.

For a detailed derivation of the quaternion inactive, active, and auxiliary Fock
matrices we refer to sections B.1 and B.5 in Appendix B. Similarly, analo-
gous formulae for the one-index transformed gradient, one-index transformed
generalized, inactive, active, and auxiliary Fock matrices and transition gra-
dients, transition generalized, active, and auxiliary Fock matrices can be
derived (see Appendix B for details). The orbital sigma vectors, Eqgs. (4.37)
and (4.38), are now given by:

e Configurational contribution to ©o°,:

(%d9,)" (4.58)
e Orbital contribution to 9o?,,:
N | o Qo o .
(Qgpq) - 5 Z [QQPTquT - QbPTngr} ’ (4'59)

T
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with all summations are over orbitals and not spinors.
The quaternion matrices may reduce to real or complex matrices depend-
ing on the point group symmetry

e for Cy,, Doy, and Doy all matrices are real and the CI vectors are also
real (or pure imaginary). For Dy, the quaternion matrices will also be
blocked by inversion symmetry in gerade and ungerade blocks.

e for Cy, C,, and (5, all quaternion matrices reduce to complex matrices,
but the CI vectors are generally complex. In (5, the matrices will be
blocked by inversion symmetry.

e for C; and (' there are no reductions and all matrices are, in general,
quaternion. For C; we may use inversion symmetry. The CI vectors
are generally complex.

Note that some of the savings from symmetry comes from the reduction of
quaternion matrices to real or complex matrices, and the rest of the savings
comes from the blocking of matrices by inversion symmetry.

4.9 Configurational Sigma Vectors and Den-
sity Matrices

A more in-depth analysis of direct Kramers restricted CI can be found in
Ref. [19] and Ref. [20], and we will only re-iterate the most important results
here.

One of the potentially most time-consuming step is the calculation of the
configurational sigma vectors, Egs. (4.19), (4.35), and (4.36):

o= (| B0},
0w = (| H|2,) b, (4.60)
o => (@, |fH|@,) c,.

All three kinds of sigma vectors can be calculated in the same way, as the
normal Hamiltonian H and the one-index transformed Hamiltonian H have
the same symmetry under time-reversal, complex conjugation, and particle
interchange.
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The Hamiltonian matrix elements, <®N‘ff ‘@,,> can be expressed in terms
of integrals and coupling coefficients

Ha = (®,) A0, ) = ZA“”huv Z try (u0ly) (4.61)
uva
with
AHU = <(b ‘X—i_ (I)l/>7
) (4.62)

The calculation of density matrices
+ _ v+ _ v R
qu - <L‘qu‘R> o Z( u) qu nu’
uv

) ()" 4

Pq ) Pq,TS nu’

(4.63)
P:l::l: <L

pq,rs

is very similar to the calculation of CI sigma vectors, and we will not consider
them here.

The current state of the art CI programs (e.g., LuciA by J. Olsen) use
the concept of alpha and beta strings [13,21-23], which leads to very efficient
calculations of the couplings coefficients A4y and Ay . In non-relativistic
theory we can write a determinant as [21]

¢y = a(la Na):@(la Nﬂ) |0> ) (464)

where o (3) are alpha (beta) strings of creation operators of length N, (Ng).
Completely analogous we write a relativistic Slater determinant in terms of
barred and unbarred orbitals instead of alpha and beta strings:

P, = p(I, NLD)I_)(I’ Nﬁ) |0> ) (4'65)

where p (p) are strings of barred spinor (unbarred spinor) creation operators
of length N,, (N).

Similar to the non-relativistic Mg quantum number defined by Mg =
5(No — Ng) we define

1
Mg = §(Np - N;), (4.66)
Note that the spinors will, in general, not be pure alpha or beta functions
but will have non-zero components for both spin orientations, although for
spin-free calculations or calculations with the non-relativistic 4-component
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No 6 5 4 3 2 1 0
Npb, 0O 1 2 3 4 5 6
M¢ 3 2 1 0 -1 -2 -3

hel
Z

ol
<

=

o B N W M OO O =
o o0 A W N B O
AR S = T =S CRoV

Figure 4.2: Pentadiagonal block structure of the CI Hamiltonian matrix for
an even number of electrons, given for a system with six electrons. The
unshaded blocks are zero for all point groups. The plain grey groups are
zero for real and complex point groups. The two different backgrounds in
the striped blocks highlight the partitioning of the Hamiltonian in the real
and complex groups into two disjoint sections (reproduced from Ref. [19]).

Lévy-Leblond Hamiltonian the spinors will, in fact, be pure alpha or beta, but
the class of unbarred spinors will contain both pure alpha and beta spinors
depending on the boson symmetry of the spatial part of the orbital. For
example, spinors of boson symmetry A will have alpha spin (depending on
the orientation of the Cy axis) whereas spinors of symmetry B will have beta
spin. This means that for a spin-free calculation determinants with Mg = 0
will be scattered into the Mg = 0,+2, 44, ... blocks. Note also that in non-
relativistic CI expansions the CI Hamiltonian will be block-diagonal in Mg,
i.e., different determinants with different Mg values will not couple, whereas
in a relativistic CI expansion determinants with different My values do, in
general, couple.

As the Hamiltonian — either the normal Hamiltonian (Eq. (4.5)) or the
one-index transformed Hamiltonian (Eq. (4.40)) — contains at most two-
body operators, the CI Hamiltonian matrix element between two determi-
nants that differs in more than two spinors must be zero. From this we see
that H,, = 0 for [AMy| = |[ME — M¥%| > 2, and, assuming the determinants
are ordered into subsets on My values, the Hamiltonian is penta-diagonal.

This structure is represented in Fig. 4.2 for a system with six electrons (re-
produced from Ref. [19]).

The integral classes needed for the CI Hamiltonian depend on the dif-
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N, N
6 0
501
4 2
3 3
2 4
1 5
06

Figure 4.3: Indication of the non-redundant part of the Hamiltonian for an
even number of electrons, given for a system with six electrons. The elements
above the diagonal are redundant as the CI Hamiltonian is Hermitian. The
elements in the lower part of the CI Hamiltonian is given by time-reversal
symmetry. See text and Fig. 4.2 for detailed explanation on the shadings.

ference, AMp, between the two determinants. The integral classes needed
are [19]:

o AMg = 0: hy,, (uv|zy), and (ud|zy),
o AMg =1: hy; and (uv|Zy),
o AMy = 2: (uv|xy).

From this we immediately see that the AMy = 1 block is zero for real and
complex groups as they only involve integrals with an odd number of bars
which is zero for real and complex groups. This is represented with the
gray shading in Fig. 4.2. It also separates the Hamiltonian into two disjoint
sections for real and complex groups as represented by the two different
stripings in Fig. 4.2.

For an odd number of electrons the two sets are related by time-reversal
symmetry, and the two sets of eigenvectors constitute Kramers pairs of V-
electron states where ¥ will follow one row in the fermion irrep and ¥ will
follow the other.

For an even number of electrons the two sets are not related and corre-
sponds to different boson symmetry. We note that for N even

K| = |T). (4.67)
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The wave function is a linear combination of determinants and their Kramers
partners

W) = 310, + (1= Ga)ca @) (4.68)

The (1—6,z) is to avoid double-counting the closed shell determinants |®,) =
|®5). Operating with the time-reversal operator on |®,) gives

K1WY= 376 95) + (1 - b)) (4.69)

Equating Eq. (4.68) with (4.69) we see that
cu = ¢ (4.70)

The set of determinants with even Mg is symmetric under the principal
axis (or reflection for C) whereas the set of determinants with odd M is
antisymmetric. For example, in Cy the determinants with even My will have
symmetry A and whereas the ones with odd Mg will have symmetry B.
For the (s, point group the determinants with even Mg will also split into
determinants with real CI coefficients (A; symmetry) and determinants with
pure imaginary CI coefficients (As symmetry). The odd My determinants
also split: By (Bj) symmetry determinants will have real (imaginary) CI
coefficients. For Cy, and Do, the wave function will also have inversion
symmetry, and can be selected as gerade or ungerade.

For N even it is possible to use time-reversal symmetry adapted config-
uration state functions (CSF) which renders the CI Hamiltonian real [19].
The advantage of using CSFs is that the wave function is guaranteed to be
time-reversal invariant. However, this can also be ensured by only saving
the Mg > 0 parts of the CI vectors, as the My < 0 part can be gener-
ated by time-reversal symmetry, using Eq. (4.70) under the assumption that
the determinants are sorted such that all |®,) has semi-positive My values
and |®;) has semi-negative My values. The non-redundant part of the CI
Hamiltonian is indicated in Fig. 4.3. We suggest the following algorithm for
calculating sigma vectors for N even in determinant basis is

1. Loop over Mg = M2 . MD2 with step M >.
M3 will be 0 or 1 depending on boson symmetry (e.g., 0 for A symme-
try or 1 for B in Cy), MpE® is determined by the number of electrons,
and the step length M;tep is 2 for real or complex point groups and 1
for quaternion point groups.
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(a) Loop over Mg = max (Mg — 2, ME®) ..., Mg with step M.
The missing M7 + 1 and M7 + 2 is generated using complex
conjugation. The diagonal part My = Mj can be done with
special triangular code.

i. Loop over determinants and calculate H,,, and sum up o, =
o, + H,,c, and if Mj > 0 then 0, =0, + H;ch.

The algorithm for calculating sigma vectors for NV odd is identical to the
one above, except that M2 should be equal to —MDa*,

4.10 Implementation

In this section will describe the basic steps in the implementation based on
the algorithms and formulae presented in the previous sections.

1. Setup of the calculation: Select basis set, active space, convergence
threshold, generate start guess, find non-redundant orbital rotations
etc. Set macro iteration counter k£ = 0.

2. Increment macro iteration count: k£ := &k + 1.

3. Integral transformation: Calculate the needed molecular orbital in-
tegrals. In general, we need (gglaa) and (ga|ga) integrals (two general
and two active indices) '. Within the current implementation this is
the most time-consuming step, and in Chapter 5 we will look on various
approximations.

4. Energy & gradient: Calculate the energy and the gradient (Sec. 4.7):

(a) the calculation of the active density matrices @Dy, and Py, 4,

(b) the calculation of the standard Fock matrices FY, and ®F,,

(c) reading of the molecular orbital integral file, calculate Fp"g and
store the (uv|zy) integrals. The former for the orbital gradient and
the latter for the configuration gradient and the configurational
contribution to oy,

(d) calculate the energy:
E = (0| f1|o)

=3 (Cha+9FE) + 0D, S + Y org, 4TV

!Due to limitations in the current implementation of the direct molecular integral
transformation (gg|ga) integrals are actually calculated.
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and the gradient from Eqs. (4.46) and (4.51),

(e) and finally calculate the configurational gradient as a CI sigma
vector (the first line of Eq. (4.19)).

All the matrices calculated in this step are saved as they are all needed
for the linear transformation in the micro iterations. If the norm of the
gradient, ||g|| < tgradient, Where tgragient is the threshold chosen in Step
1, the wave function is converged and we exit the macro iteration loop

. Step control: Check if the step is acceptable, i.e., if the ratio Eq. (4.24)
is sufficiently close to unity. If not, the decrement the macro iteration
counter and solve the reduced linear equations, Eq. (4.29), for a reduced
trust radius s, and go back to Step 2.

. Find Restricted Step: Solve the linear equation, Eq. (4.26), by pro-
jecting the Hessian onto a set of trial vectors. The implementation of
step 6a to 6d is based on an extension of the linear reponse program
by Saue and Jensen [24].

(a) Initial trial vector(s): Find the initial trial vectors using the
generalized Davidson-Liu algorithm using a residual as minus the
gradient. Set micro iteration count j = 0.

(b) Linear transformation(s): Increment micro iteration count:
j :=j+1, and calculate the linear transformation(s) — the sigma
vector(s) — using Eqgs. (4.35) — (4.38). This requires the calcu-
lation of one-index transformed quaternion matrices (YF¢, @FV
and 9F?) and quaternion transition Fock matrices (?F" and F?)
(see Appendix B for details) along with the CI sigma vectors.

(c) Solve the reduced linear equations: Add the new elements to
the reduced Hessian, (4.30), and solve the reduced linear equations
Eq. (4.29) finding the level shift » and the step A such that the
step is within the trust radius and the Hessian has the proper
structure.

(d) Calculate new trial vector(s): Calculate the residual
r=H —-vI)A+g. (4.72)

If the norm of the residual is sufficiently small, exit the micro iter-
ation loop and jump to step 7. When we are close to convergence
the linear equation should be solved to within #gaqiens in order
to obtain quadratic convergence. When we are far away from
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convergence it is sufficient to obtain the general direction, and a
suitable threshold is 0.2||g|| [6]. If the micro iterations are not
converged new trial vector(s) are generated using the generalized
Davidson-Liu algorithm [17] and jump to step 6(b).

7. Obtain new orbitals: Find the new orbitals

ki1 CTO
e+ 4]’ (4.73)
k+1 k
Qo =% exp (—Qn) .

For the details on how to calculate the new orbitals, Qcpk+1, see Ap-
pendix A. Also, the orbitals may also be transformed to Fock-type
and/or natural orbitals (see Sec. 5.9). Jump to step 2.

The algorithm described above has been implemented within the DIRAC
program package.
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Chapter 5

Improvements and
Approximations for

KR-MCSCF

The current implementation is neither finished nor in a fully stable state. In
this chapter we discuss what needs to be finished and various improvements
that can be made to the code. We also discuss some approximations that
can be invoked to speed up calculations.

5.1 NEO algorithm

The current implementation is solely based on solving the Newton-Raphson
equations. It is an advantage to use the Norm FExtended Optimization al-
gorithm instead [1,2]. The NEO algorithm is based on solving a eigenvalue
equation instead of the Newton-Raphson linear equations. The advantage of
the algorithm is that the level shift v is automatically in the correct interval
as the eigenvalues of the (reduced) Hessian is known hence v can be chosen in
the correct interval. This makes it particularly simple to implement excited
state wave function optimizations.

Status: we have a working version of a direct iterative eigenvalue solver,
currently used for calculating excitation energies within the polarization
propagator (PP) method [3]. That part of the program has to be modified
for use within the KR-MCSCF optimization.

79
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5.2 CI Sigma Vectors and Density Matrices

The current CI implementation is a very simple minded determinant based
approach. At the beginning of the calculation (Step 1 in the Section 4.10)
a list of the determinants in the CI expansion is generated, and CI sigma
vectors are generated straightforwardly:

Loop over MKI
Loop over MKJ with abs(MKI-MKJ) <= 2
Loop over determinants I with MK = MKI
Loop over determinants J with MK = MKJ
Calculate CI Hamiltonian element H(IJ)
Sigma(I) = Sigma(I) + H(IJ) B(J)
End Loop
End Loop
End Loop
End Loop

The bottleneck in this approach is that H;; is zero for many determinants,
but we still have to check that for each (IJ). The N? complexity of this
algorithm gets dominant for large CI expansions which limits the current
implementation around 100,000 — 200, 000 determinants. Also, the current
implementation does not employ the reduction for an even number of elec-
trons suggested in Sec. 4.9, although the program does use the blocking by
My value.

Status: work is in progress to interface the spin-dependent large-scale CI
program LUCIAREL by Jeppe Olsen and Timo Fleig into the KR-MCSCF
program. Their implementation is string-based and can handle very large CI
expansions (see Ref. [4]).

5.3 Properties

Currently, only first order properties (expectation values) can be calculated.
Many interesting properties are higher order, for example, spin-spin cou-
plings, chemical shifts, and polarizabilities, all of which require linear re-
sponse [5]. Also, the formalism for relativistic four-component quadratic
response has been implemented for DHF [6], and it should, in principle, be
straightforward extensible to KR-MCSCEF.

Another interesting property is the molecular gradient. We have already
implemented the molecular gradient for DHF (ibid., page 133), and as the
formulae for the MCSCF molecular gradient is very similar because it also is
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fully variational, it should be relatively simple to implement the KR-MCSCF
molecular gradient. The only new thing required, compared to DHF, is the
back-transformation of the active two-electron density matrix to AO-basis.
It is probably required to do this back-transformation batch-wise as the full
AO two-electron density matrix can be fairly large due to the n%, scaling —
nao > 1000 is not unusual, making the storage requirements in the tera-byte
size.

Status: In principle, most of the ingredients for a Kramers restricted
multi-configurational response program (KR-MCLR) is present, but needs
to be put together. The same applies, in principle, for a KR-MC quadratic
response program. The KR-MCSCF molecular gradient should also be rel-
atively simple to implement. Also excitation energies within the relativistic
polarization propagator method [3] should be simple to implement.

5.4 Debugging

At the time of the deadline for this thesis there was still a few problems left
for some point groups.
Status: Unknown.

5.5 Molecular Integral Transformation

Some of the steps of the KR-MCSCF calculations are very expensive. The
most expensive step for all the calculations performed in the forthcoming
section was the integral transformation where the current implementation
in DIRAC require us to transform the integrals (gg|ga) (three general indices
and one active index). As a general index is both electronic and positronic
it requires substantial CPU time to generate the integrals and the disk space
requirements can be large.

5.5.1 Transform Only (gg|aa) and (ga|ga) Integrals

It would therefore be of big interest to modify the integral transformation
program to generate only the integrals needed ((gg|aa) and (ga|ga)).

Status: not implemented, as it requires substantial changes to the inte-
grals transformation program. Another possibility is the “poor mans version”
where the integral transformation is called twice.
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5.5.2 Direct Implementation of Auxiliary F¢ Fock Ma-
trices

Another alternative would be an direct implementation of the auxiliary Fock

matrices ?F¥, 9F?, and YF? which would not require disk space (except for

intermediate quantities in the integral transformation).
Status: not implemented. Requires a substantial amount of work.

5.5.3 Semi-Direct Implementation of Auxiliary F¥ Fock
Matrices

The auxiliary one-index transformed Fock matrix is given by

Fp% = Z (pv|zy) Puv, zy

vTY

= Z (ﬁv\xy) Puv,wy + (pﬁ\xy) Puv,wy + (pv|56y) Puv,acy + (pv\x@) Puv,:cya
vTY

(5.1)

where the first term is just the transform of the ordinary F? matrix:

> by FS, (5.2)

and
(pilzy) = D — (prlay) bro,
(polZy) =) ber (plry), (5.3)
(pvlag) = — (pvlzr) by,

By defining:

T=) bar, (5.4)

and calculating the set of (g{a, @}|{a, @}a) integrals we can calculate all terms
of the F? matrix; the first term from the ordinary F? matrix, the second
term from the (gé@|aa) integrals, the third term and the fourth term from the
(ga|aa) integrals (using some of the relations for double-quaternion integrals).
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We have now reduced the integral storage requirements from 2n2n?2 to
nga® (for the gradient and F?) plus n,(2n,)?n, for each trial vector. Al-
though we have to calculate the (g{a,a}|{a,a}a) integrals for each trial vec-
tor there might still be a gain or status quo in CPU time as “small” integral
transformations (index 3 and 4 are a small number of orbitals) are substan-
tially faster than the (ga|ga) integrals transformation otherwise needed.

Status: not implemented, requires some work, but should be relatively
easy to implement within the current implementation of the molecular inte-
gral transformation program.

5.5.4 Frozen Orbitals (I)

In order to reduce the number of orbitals which has to be included in the
molecular integral transformation one may also freeze orbitals. It is possible
to freeze inactive, virtual, or positronic orbitals. As very large uncontracted
basis sets often are employed in relativistic calculations there is a large num-
ber of high-lying virtuals that may contribute very little to correlation effects,
and one may freeze the orbitals, excluding them from the integrals transfor-
mation. It is also possible to freeze the core. Frozen orbitals should be used
with care as these orbitals may be important for some properties.
Status: implemented.

5.5.5 Frozen Orbitals (II)

The freezing of orbitals has the downside that the orbitals to be frozen must
be selected beforehand. It would be desirable to dynamically select which
orbitals to freeze. A very simple strategy is to freeze orbitals that have
negligible gradient elements. Assuming the Hessian is diagonal,

1 Haa 0
H = [ o &, (5.5)

and that the gradient is zero for orbitals b:
_ Y
5= |4 (5.6)
the Newton step is given by

. Hljg (5.7)
- 1% -
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effectively freezing the orbital.

However, this idea can be improved radically using our mathematical in-
sight of the structure of the gradient. The gradient can be considered as
having two parts: an occupied — occupied block (inactive — active and ac-
tive — active rotations) and an occupied — virtual block (occupied — virtual
and occupied — positronic rotations). The occupied — virtual block of this
matrix will have n,e. columns and ny,e = n;,, + nb,, rows. From linear
algebra we know that this matrix will have rank < min(neee, Nwirt) = Noce
assuming ngee < Myire- 1t s now possible to perform a singular value decom-
position (SVD) of the occupied — virtual block of the gradient, transforming
the virtual orbitals to the set of virtuals that gives the most compact rep-
resentation of the gradient. This is done by diagonalization of the matrix
glcc—vi'rthCC—?}iTtﬂ and transforming the virtual orbitals with the eigenvector
solutions of this matrix. After this transformation only n,.. virtual orbitals
will have non-zero gradient elements, and one may freeze the remaining or-
bitals.

Step 3 in Section 4.10 is replaced with a (ga|aa) integral transformation,
needed to get the gradient correct. After Step 4 we perform the transfor-
mation of the virtual orbitals as described above. The virtual parts of the
gradient and all the Fock matrices calculated in Step 4 must also be trans-
formed. Before Step 6 we have to calculate the integrals needed for the
micro-iterations: (gg|aa) and (ga|ga), but only with the reduced set exclud-
ing the orbitals with zero gradient. In effect, we have reduced the integral
transformation from n?n2,, . to nnd . . (for the gradient) + (2n0cc)*n2 1ive
(for the sigma vectors). Since, in general, 2n,.. < n this will give big reduc-
tions in CPU time and disk space requirements.

We have, however, assumed that the Hessian is diagonal, Eq. (5.5). If
this is not the case we are effectively using a projected Hessian, and if the
coupling blocks are large the quadratic convergence is destroyed. Unfortu-
nately, preliminary test shows that this is actually the case often leading to
extremely slow convergence.

The reduced set of orbital gives a correct description of the gradient.
Along the same lines as above we add the orbitals that gives the most compact
description of the initial orbital trial vector

o _ 9
boe = (5.8)

pq,pq

Like before, we diagonalize blcc_,,mbocc—mt and select the set of orbitals with

eigenvalues larger than zero, yielding a total number of 2n,,.. virtuals. These
virtuals include a correct description of the gradient and the initial trial
vector, and the couplings between these. Preliminary test shows that the
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convergence is still very slow, but faster than only including the gradient SVD
orbitals. The convergence is not quadratic but rather linear and comparable
to DIIS DHF iterations.

Status: implemented, but requires more work in order to run satisfactory.
This can be exploited by any MCSCF program, but will be most beneficial
for the programs using direct molecular integral transformations.

5.5.6 Frozen Orbitals (III)

It is also possible to combine the two previous approaches including virtuals
which has SVD eigenvalues larger than zero or F¢ + FV Fock matrix eigen-
values smaller than some threshold, for example 100 au. With this approach
we freeze all high-lying virtuals but except those of them that are important
for the gradient. The advantage compared to Frozen orbitals (I) above, is
that the full gradient is calculated, and that the high-lying virtuals is relaxed,
but only macro iterations where they are important to describe the gradient.
Status: implemented, but gives slow convergence.

5.5.7 Neglect Positronic Part of F¢

As the positronic part of the molecular integral file is dominant it would also
be of interest to approximate (or neglect) the positronic part of the auxiliary
Fock matrices. A straightforward strategy would be to approximate the two-
electron density matrix

Puz,zy ~ Du'uD:cy - DuyD:wa (59)

in which case F¥ reduces to (written in spinor basis)

F3 =Y (pv]zy) Ppay

vzyY

~ Z (pv|2y) (DgvDay — Dy Do) (5.10)

vTY

_ § : v

- prDqU
v

This is exact for doubly-occupied and empty orbitals, but the exchange term
is under-estimated for weakly occupied orbitals. So a better solution would
be to use the better approximation

Puv,wy ~ Duszy - 5uyD;cva (511)
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in which case F? reduces to (written in spinor basis)

FR =" (pv|zy) Ppoy

VLY

~ Z (pv|acy) (quDzy - 5uyDzv)

vTY

= Z D, [Z D, (pv\:ry)] - Z dqy [ Doz (pv|zy)]

_ Cou _ Exch
= Z FS*" Dy, — F5
v

(5.12)

where FC°' and F¥* are Coulomb-only and exchange-only Fock matrices,
respectively. Unlike Eq. (5.10) this approximation requires the calculation of
new Fock matrices.

However, as we still need integrals with one positronic index for the gra-
dient! and for the one-index transformed Hamiltonian needed for the orbital
contribution to the configurational sigma vector we can not totally neglect
positronic integrals. With integrals with one positronic index we will get: (i)
a correct gradient, (ii) correct e — e block of Hessian, (iii) correct e — p block
of Hessian, but (iv) incorrect p— p block of Hessian. The latter should not, in
general, matter as the p — p block of the Hessian is dominated by 2mc?. For
example, within the Sternheim approximation [7] (see also Aucar et al. [8])
the p — p part of the Hessian is actually explicitly set to 2mc?.

It is possible to go even further and approximate the entire orbital-orbital
part of the Hessian using Eqgs. (5.10) or (5.12). In order to get the gradient
correct we only need (ga|aa) integrals (this also gives a correct configurational
— orbital part of the Hessian).

Status: Eq. (5.10) is implemented (the calculation “only” requires (ge|ea)
integrals). Eq. (5.12) would be very easy to implement. The suggested
approximation of the entire e — e Hessian has also been implemented, but
preliminary test indicates convergence problems most likely caused by the
Hessian being non-Hermitian. It is apparently important to add terms to
the sigma-vectors which makes the Hessian Hermitian. If it is possible to

make this approximation stable it could also be applied in non-relativistic
MCSCF programs.

'In order to control and check convergence it is necessary to calculate the gradient
correctly. With a correct gradient we can do any approximation to the Hessian as this will
only affect the rate of convergence. With an approximate gradient and an approximate
Hessian we may converge to wrong orbitals!
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5.5.8 Diagonalization or Cholesky Decomposition of
the Two-Electron Density Matrix

It is also possible to diagonalize the two-electron density matrix
P..= VAV, (5.13)

where A is a diagonal matrix. This allows us to write the auxiliary Fock
matrix as a sum of Coulomb-only Fock matrices

F =" (pvlay) Ppoy

VY

= AiVgw,iViy, (pv]ay) (5.14)

=D AiVawiFp,

where F' is a Coulomb-only Fock matrix. Another possibility is to Cholesky
decompose the residual after Eq. (5.10)

Puz,zy - Duquy - DuyDa:v (515)

The auxiliary Fock matrix can be calculated as Eq. (5.10) plus an additional
number of Coulomb-only Fock matrices. With both of these two methods we
would only need integrals with one general (electronic and positronic) index
and three active indices to get both gradient and Hessian correct. The price
we pay is having to calculate many Fock matrices (in the worst case scenario:
a? Fock matrix where a denotes the number of active orbitals.

Status: not implemented, but it requires very little work to do so.

5.5.9 Partial Neglect of (LL|SS) or (SS|SS) Integrals

The so-called one center approximation [9] for the small component two-
electron integrals

(LAVEIKEAD) = Sandop (WaVE|KEAD)

L

(5.16)
(foVBWg/\%) ~ dcp (Mﬁ”ﬂ’%/\%) )

where A, B, C, and D indicate on which center the atomic orbital basis
function is located, can speed-up the integral transformation and Fock ma-
trix constructions. The savings are largest for molecules with more than one
heavy atom, but even for molecules such as YbH there is a saving of approx.
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30% in Fock matrix constructions. It would also be advantageous to dy-
namically determine which integrals are needed. For example, far away from
convergence it would, in general, be a waste of time to calculate all Fock ma-
trices and integrals with all (LL|LL), (LL|SS), and (SS|SS) integrals. Note
that for consistency the KR-MCSCF calculation should start with at least
the same integral classes as the DHF calculation, otherwise the KR-MCSCF
optimization might “undo” some of effects of the (LL|SS) and (SS|SS) in-
tegrals in the first few iterations, and then “redo” the changes later when
the (LL|SS) and (SS|SS) are introduced in the KR-MCSCF optimization.

Integral screening in the integral transformation has also been imple-
mented [10].

Status: implemented.

5.6 Approximate Hamiltonians

Beside the standard Dirac-Coulomb Hamiltonian DIRAC also supports both
a spin-free Dirac-Coulomb Hamiltonian based on Dyall’s spin-free formalism
[11] and the Lévy-Leblond non-relativistic Hamiltonian [12,13].

Status: The program already supports the use of real or approximate
boson symmetry in the CI expansion, but it could also be advantageous to
use spin multiplet (singlet, triplet, etc.) adapted CSFs.

5.7 Neglect of e — p Rotations

Finally, it is possible to neglect the e—p rotations. Within this approximation

the positronic solutions are not relaxed at the MCSCF step. In the limit of

full CI this corresponds to the no-pair CI method. See Section 6.1, and 6.2

for the effect of e — p rotations on energy and some first order properties.
Status: Implemented.

5.8 Separate Convergence Thresholds for e—e
and e — p Rotations

Suppose we have a relativistic MCSCF wave function that is fully relaxed
with respect to e — e relaxations, i.e. ||g¢|| < t, where t is the wave function
threshold. The pure positronic Newton step is

x? = —H''g”. (5.17)
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and the predicted second order energy change is

ap = Lgtag

1
2mc?’

(5.18)

~ [g”lI*

as the positronic part of the Hessian is dominated by —2mc?, The second
order energy change from a pure electronic step is

AE® ~ —t2. (5.19)
If we require that AE? < |AE®| we get:
le?|| < v2¢t ~ 200t. (5.20)

The step length associated with this gradient is:

t
200°
That is, if we are only interested in the energy or the wave function we can
choose separate threshold for the convergence of e — e rotations and e — p
rotations! However, care should be taken if the wave function is used for
properties that critically depend on the small component density such as
parity violation, or if the wave function is used for linear or higher-order
response where it is assumed that the wave function is converged, i.e. the
last part of Eq. 4.59 or Eq. (4.59) is ignored leaving the Hessian Hermitian
only to within ||gP||, which may result in problems converging the response
functions.

Status: not implemented, but it is very trivial to do so.

1P| ~

(5.21)

5.9 Transformation to Natural and Fock Type
Orbitals

Similar to non-relativistic MCSCF optimizations (e.g., see Ref. [14]) it may be
advantageous to transform the orbitals obtained in Step 7 in Section 4.10 in
order to improve the diagonal dominance of the Hessian. For non-relativistic
calculations there is empirical evidence that the inactive and virtual orbitals
that diagonalize F© 4+ F" improves diagonal dominance, and transformation
of the active orbitals to natural orbitals (the orbitals that diagonalize the
active part of the one-electron density matrix) also improves diagonal dom-
inance. For GAS calculations pseudo-natural orbitals that diagonalize the
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density matrix within each GAS space are used, as the energy is generally
not invariant to rotations between the GAS spaces. It should be noted that
the transformation to natural or pseudo-natural active orbitals also change
the CI vector, which has to be counter-rotated [15,16].

Status: Fock type orbitals are implemented, although without the counter-
rotation of the CI vectors, which limits us to the transformation of only the
inactive, virtual, and positronic orbitals.

5.10 Parallelization

Parallelization is possible (and beneficial) at the following steps:
1. integral transformation step,

2. Fock matrix calculations (for the gradient or various parts of the sigma
vectors),

3. CI sigma vectors and density matrices.

Status: Partially implemented; the integral transformation step and the
Fock matrix calculations are both parallelized, and, within the current im-
plementation, it should be very simple to add parallelization of CI sigma
vectors and density matrices.

5.11 Hessian Update Methods

As an alternative to the gradient and Hessian based optimization proce-
dure presented, it is also possible to use gradient based optimization with
an approximate Hessian. The Hessian can be updated using the previous
calculated gradients (e.g., see the monograph by Fletcher [17]). The use of
gradient based methods requires only (ga|aa) integrals.

Status: not implemented.

5.12 Start Orbitals

Finally, we note the importance of good start orbitals. As discussed in Ch. 3
canonical DHF orbitals are not particularly well suited, as the lowest virtu-
als often are very diffuse functions which we do not want to include in the
active space. Other possibilities include h;-virtuals or FC-virtuals [18], and
average-of-configuration DHF orbitals. For heavy atoms the quality (proper
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degeneracies, proper occupation) of the final converged DHF orbitals depend,
in general, strong on the quality of the DHF start orbitals. Currently the
only option for DHF start orbitals in DIRAC is the orbitals obtained from the
diagonalization of the one-electron Hamiltonian, that is, the orbitals obtained
from solving a one-electron system. The lowest orbitals are then occupied
according to the aufbau principle. From non-relativistic theory the orbital
energies are given by

Z2

E=-2_
2n2’

(5.22)
which means that the orbital energies of the start orbitals are almost de-
generate for each shell. This will always give wrong start occupation for
the 4th row and below in the periodic system! For example, for Lil the
proper occupation for iodine is 1s2s2p3s3p3d4sdpdd5sd5p where 5sbp is in
the valence. However, using the orbitals from the diagonalization of the one-
electron Hamiltonian will instead occupy 1s52s2p3s3p3d4sdpdd4f as the 4f
will have eigenvalues much lower in energy (=~ —88 au.) compared to the
5-shell (= —56 au.). Besides slowing down convergence we may often end up
with orbitals that do not have the proper degeneracies and in the average-of-
configuration case we may have wrong orbitals among the active orbitals or
shells divided between different active spaces. When these “broken” orbitals
are used in the following MCSCF procedure it may be impossible or difficult
to converge towards the state we are interested in.

As an alternative to using Fock orbitals (canonical, average-of-configuration,

hi-virtuals, or F¢-virtuals) natural orbitals (MP2 NO) can be used as MC-
SCF start orbitals. MP2 NOs is probably the best method for obtaining start
orbitals even for molecules with large static correlation [19], where the MP2
natural occupation numbers are far from correct, but where the ordering of
the orbitals is still correct.

However, MP2 is still more expensive than DHF in terms of CPU time,
and open-shell MP2 is not entirely trivial restricting us to closed shell mole-
cules.

Status: MP2 NO is under implementation. A better DHF start guess is,
however, still needed, for example, atomic densities or relativistic Hiickel.
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Chapter 6

Preliminary Applications

Very early in the development we discovered that one of the bottlenecks
in larger KR-MCSCF calculation is the calculation of molecular integrals.
This is partly due to an, for our purposes, sub-optimal implementation of
the molecular integral transformation, but also partly due to the large basis
sets we use. Therefore we concentrated most of our efforts on developing
several schemes for speeding up the integral transformation step. As a con-
sequence we can only present a few preliminary applications. Nevertheless,
these calculations show some very interesting features of relativistic MCSCF
calculations.

6.1 The Ionization Potential of Zn and Hg

The first ionization potential, IP;, of Zn is defined by
IP, = E(Zn") — E(Zn), (6.1)

where E(Zn") and E(Zn) are the energies of Zn' and Zn, respectively. Zn
has near-degeneracies due to the strong interaction between 45 /25 4p? /2> and
4p2 s, configurations [2]. Hg has a similiar electronic structure, and we expect
strong static correlation due to the interaction between the 6s? /25 6p? /25 and
6p3,, configurations.

For Zn we used a 20s18p13d large component basis set (Ref. [2] or see
Table 6.1), and for Hg we used a 23519p14d9 f large component basis set [3] to
which we added two diffuse p functions for the description of the 6p orbitals
(see Table 6.2 for the basis set). The different active space we have used
are defined in Table 6.3. The relativistic calculations have been performed
with the Dirac-Coulomb Hamiltonian, and without e — p relaxation. The
effect of the Breit interaction not included in the Dirac-Coulomb Hamiltonian
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Table 6.1: Exponents for 20s18p13d large component Zn basis set. The
exponents are taken from Ref. [1] and ranges for the s, p, and d functions are
taken from Ref [2]. The small component basis set is generated by kinetic
balance.

Exponents Used for
4250042.1 S
663740.70 S

144800.18 sp
38457.241 sp
11633.475 sp
3957.4984 sp
1508.8936 sp
624.94155 spd
272.06944 spd
121.77099 spd
54.721784 spd
24.885485 spd
11.536923 spd
5.2194206 spd
2.34219989 spd
1.0625147 spd
0.46920953 spd
0.18025741 spd
0.08726504 spd

0.04021766 spd




6.1 The Ionization Potential of Zn and Hg

95

Table 6.2: Exponents for 23s21p14d9f large component Hg basis set. The
exponents are taken from Ref. [3] except for two extra p exponents. The
small component basis set is generated by kinetic balance.

Exponents Used for Exponents Used for
52311095.52 (s) 16369430.48 (p)
12004904.50 (s) 2923564.628 (p)

3398412.630 (s) 665746.2787 (p)
1053466.233 (s) 176341.9102 (p)
352643.1218 (s) 52520.02187 (p)
125378.8033 (s) 17323.66041 (p)
46972.27384 (s) 6286.133614 (p)
18358.59081 (s) 2487.310520 (p)
7416.846186 (sd) 1058.036925 (p)
3086.363699 (sd) 475.7144214 (pf)
1323.964977 (sd) 223.3130370 (pf)

582.7863441 (sd) 108.1488395 (pf)

265.3934503 (sd) 52.33974957 (pf)

125.7373693 (sd) 26.18680515 (pf)

61.44748799 (sd) 12.96730950 (pf)

30.74341476 (sd) 6.287389869 (pf)

15.11217155 (sd) 2.961603741 (pf)
7.329464658 (sd) 1.274534919 (pf)
3.486387448 (sd) 0.4920498338 (p)
1.499571734 (sd) 0.189961
0.5971311522 (sd) 0.073337
0.2083253336 (sd)
0.06626400900  (s)

Table 6.3: Definition of active spaces for relativistic and non-relativistic MC-
SCF calculations on Zn and Zn" (n = 4) and Hg and Hg* (n = 6). Excita-
tion level is the excitations allowed from active space 1 into active space 2
(S=singles; D=doubles).

Calculation Active space 1 Active space 2 Excitation level
dhf empty empty n/a

casl nsnp empty n/a

rasl (n—1)dnsnp nd(n+1)s SD
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Table 6.4: SCF and MCSCF energies (au) for ground-state Zn (*Sp) and Zn*
(*S1/2), and first ionization potential (eV) for Zn. See text and Table 6.3 for

definition of calculations.

Calculation E(Zn) (au) E(Zn™) (au) IPy (eV)
Non-relativistic
hf —1777.84077 —1777.56021 7.634
casl —1777.87224 —1777.56021 8.491
rasl —1778.08064 —1777.77471 8.572
Relativistic
dhf —1794.61046 —1794.32410 7.792
casl —1794.64154 —1794.32410 8.638
rasl —1794.85249 —1794.54140 8.465
Exp. (Ref. [4]) 9.388

Table 6.5: SCF and MCSCF energies (au) for ground-state Hg (*Sp) and

Hg't (*Si)2), and first ionization potential (eV) for Hg.

Calculation E(Hg) (au) E(Hg") (au) IP; (eV)
Non-relativistic
hf —18408.3278 —18408.0779 6.80
casl —18408.3570 —18408.0779 7.59
Relativistic
dhf —19648.8777 —19648.5632 8.96
casl —19648.9023 —19648.5632 9.23
Exp. (Ref. [4]) 10.44

Table 6.6: CI Coefficients for ground state Zn (n =
MCSCEF calculations.

4) and Hg (n = 6)

Configuration Zn Hg

C;el CrIlr C§el crllr
(nsl/2)2 0.970511 0.969052 0.979622 0.966388
(np1/2)2 —0.141310 —-0.142521 —0.136079 —0.148428

(npg/g)2 —0.138091 —0.142521 —0.104457 —0.148428
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Table 6.7: Natural orbital occupation numbers for ground state Zn (n = 4)
and Hg (n = 6) MCSCF calculations.

Orbital Zn Hg
Norel Nonr Norel Nonr
ns1/2 1.884 1.878 1.919 1.868
np1 /2 0.040 0.041 0.037 0.044
np3 /o 0.038 0.041 0.022 0.044

is localized to the core region, hence it gives similar energy shift for both
X and Xt (X=Zn,Hg) and should therefore have very little influence on
the ionization potential [2,5]. The effect of relaxing the positronic orbitals
has also largest effect on the core region and should therefore not have any
significant effect on the IP (See Sec. 5.8 for a discussion on the effect of
e — p relaxation on the energy). We used DALTON [6] and DIRAC [7] for the
non-relativistic and relativistic calculations, respectively.

The energies and the IP; for Zn is given in Table 6.4. For Zn the energy
difference between the dhf and cas! calculations (0.31 au) is the static corre-
lation energy for the interaction between the 4p? states. Note that the static
correlation energy is the same at both the relativistic and the non-relativistic
level. For Zn+ there are no interaction between the 4s and the 4p state due
to inversion symmetry. For Hg there is a relativistic static correlation energy
of 0.025 au, whereas it is 0.029 au at the non-relatistic level, that is, relatistic
effects and correlation effects are non-additive. For Zn the relativistic effect
on the IP; is only 0.15 eV, whereas it for Hg is 1.64 eV. For both calculations
relativity is clearly needed for quantitative descriptions, and for Hg even for
qualitative descriptions.

The strong static correlation for both Zn and Hg can also be seen from
the large CI coefficients on the p? configurations (Table 6.6) or from the
large natural orbital (NO) occupation numbers of the p orbitals (Table 6.7).
Also note the spin-orbit splitting of the CI coefficients and NO occupation
numbers.

Based on non-relativistic MP2 natural occupation numbers for Zn it is
important to correlate the 3d orbitals, which is why we have selected a larger
active space with 12 electrons in the 3d4s4p4d5s orbitals. However, a CAS
calculation in this space requires more than 20 million determinants, which
is way beyond the limits of the current KR-MCSCF program. Instead we
use the restricted active space approach and split the active space into a
RASI1 space with 4d4s4p and a RAS2 space of 4d5s, allowing only single
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and double excitations (the ras? calculation). However, this calculations is
not large enough to obtain the the experimental value for the Zn IP; (9.388
eV, Ref. [4]). We need to include more dynamical correlation, either in
terms of relativistic CASPT2 (e.g., see Ref. [2]), multi-reference CI, or even
larger MCSCF calculations. It will not be sufficient to do a relativistic MP2
calculation due to the large static correlation.

Similarly, we need to retrieve dynamical correlation to obtain a IP; for
Hg comparable to the experimental value.

We also note that it was very difficult to obtain suitable start orbitals for
Zn for the ras! and ras2 calculations. hi-virtuals and F'¢-virtuals as start
orbitals did not work and the calculations converged towards a wrong state.
The average-of-configuration orbitals were so far away from the converged
orbitals that it required 25+ KR-MCSCF macro iterations to converge, but
eventually the calculation converged towards the right state. The problem
was the core-correlating orbitals present in the basis set, so we solved the
problem using F¢-virtuals and freezing the core. When the frozen-core cal-
culation had converged we let the core orbitals relax. This clearly emphasizes
the need for a relativistic natural orbital MP2 start guess.

6.2 The Effect of Relativity and Correlation
on the Dipole Moments, Electric Field
Gradients, and Electric Field Third Deriva-
tives for LiX, X=F, CI, Br, I

6.2.1 Introduction

In this section we briefly investigate the effects of relativity and correlation
on a number of first-order properties for LiX, X=F,Cl,Br,I. We calculate the
properties at the several levels:

nr non-relativistic,
noep relativistic with bare-nucleus positronic orbitals projected out, which

can be considered equivalent to an infinite order Douglas-Kroll trans-
formation

skipep relativistic with e — p relaxation only at the DHF level (the no-pair
approximation at the correlated level),

Sfull relativistic with e — p relaxation both at the DHF and MCSCF level
(the most rigous treatment)



6.2 The Effect of Relativity and Correlation on the Dipole Moments, Electric
Field Gradients, and Electric Field Third Derivatives for LiX, X=F, Cl, Br, I 99

We calculate the dipole moment, the electric field gradient (EFG), and
the electric field third derivative (EFT). The dipole moment is chosen as
an representative of a valence property. The EFG and EFT are chosen as
presentatives of core properties. A priori we expect increasing relativistic
effects going down the periodic table; from almost no effects in LiF to con-
siderable effects in Lil. Also, for the relativistic MCSCF calculations we do
not expect many differences between the noep, skipep, and full treatment,
as the relaxation of the e — p orbitals are not so important for these kind
of properties. The importance of the e — p relaxation is most evident in
calculation of second-order magnetic properties, such as in-direct spin-spin
couplings [8]. However as we have not yet developed at MC-RPA program
we are not able to investigate this yet.

6.2.2 Computational Details

The bond lengths for all compounds were taken from [9]. The Sadlej polar-
ized basis set [10-12] were used for all atoms. All calculations were performed
with the DIRAC [7] program package using the Dirac-Coulomb Hamiltonian
for the relativistic calculations and the 4-component non-relativistic Lévy-
Leblond Hamiltonian for the non-relativistic calculations.

6.2.3 Results

For LiF we have chosen an active space consisting of the Iodine 2s2p3s3p
orbitals. The iodine 2p orbitals are mixed with the Lithium 2s orbital, so
the total number of active orbitals is 8 with 8 electrons (CAS 8/8). This
active space is very similar to the non-relativsitic “4220” CAS space often
employed for HyO. As both Li and F are light atoms we do not expect any
major relativistic effects for properties.

The results of the calculations on LiF are given in Table 6.8. The relavistic
effects are, as expected, negligible. The effects of correlation varies very
much, ranging from a negligible few percent for the dipole moment to 30%+
for the electric field gradient on F. As the relativistic effects are small there
are virtually no difference at all between the different levels of e — p rotations.

For LiF the most important correlating orbitals are the 3p orbitals. How-
ever, for LiCl and down the most important correlating orbitals are the nd
orbitals (3d for LiCl, 4d for LiBr, and 5d for Lil). Based on non-relativistic
MP2 natural occupation numbers we choose an active space of the 3p3d4p
with 6 electrons (CAS 6/11). The correlating 3d orbitals include some hy-
bridization with the Li 3s orbitals. The correlating 4p orbitals are also mixed
with the 4d orbitals.
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Table 6.8: Energy and properties for LiF. E is the total energy, u the dipole

moment, ¢ is the electric field gradient at nucleus X, and h

field third derivative at nucleus X.

X
222Z

is the electric

Wave function E 7 @ G e B
au Debye au au au au

Non-relativistic

HF —106.976091 6.4831 —0.0468 —0.1848 0.0422 0.1135
CAS (8/8) —107.106556 6.3422 —0.0412 —0.2418 0.0556 0.1149
Relativistic

DHF (noep) —107.068329 6.4814 —0.0468 —0.1853 0.0421 0.1134
DHF —107.068328 6.4834 —0.0468 —0.1853 0.0421 0.1134
CAS 8/8 (noep) —107.200506 6.3375 —0.0411 —0.2418 0.0556 0.1151
CAS 8/8 (skipep) —107.200505 6.3375 —0.0411 —0.2418 0.0556 0.1151
CAS 8/8 (full) —107.200505 6.3375 —0.0411 —0.2418 0.0556 0.1151

Table 6.9: Energy and properties for LiCl. E is the total energy, u the dipole

moment, g- is the electric field gradient at nucleus X, and h

field third derivative at nucleus X.

X
2222

is the electric

Wave function E m T O M Mo
au Debye au au au au

Non-relativistic

HF —467.041624 7.2917 —0.0273 0.1557 0.0276 0.0256
CAS (6/11) —467.161987 7.2706 —0.0270 0.1634 0.0279 0.0223
Relativistic

DHF (noep) —468.490493 7.2859 —0.0273 0.1549 0.0275 0.0256
DHF —468.490479 7.2859 —0.0273 0.1549 0.0275 0.0256
CAS 6/11 (noep) —468.617901 7.2521 —0.0268 0.1723 0.0280 0.0258
CAS 6/11 (skipep) —468.617885 7.2521 —0.0269 0.1723 0.0280 0.0258
CAS 6/11 (full) —468.617891 7.2519 —0.0269 0.1728 0.0280 0.0258
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Table 6.10: Energy and properties for LiBr. E is the total energy, u the
dipole moment, ¢ is the electric field gradient at nucleus X, and kA is the
electric field third derivative at nucleus X.

Wave function E 7 @ - -
au Debye au au au au

Non-relativistic

HF —2579.89999 7.4471 —0.0177 0.3704 0.0302 —0.5777

CAS (6/11) —2580.00518 7.3903 —0.0172 0.4071 0.0306 —0.4758

Relativistic

DHF (noep) —2610.60078 7.4348 —0.0180 0.3884 0.0293 —0.3621

DHF —2610.60025 7.4348 —0.0180 0.3884 0.0293 —0.3622

CAS 6/11 (noep) —2610.70538 7.3708 —0.0174 0.4226 0.0298 —0.2465
CAS 6/11 (skipep) —2610.70485 7.3708 —0.0174 0.4227 0.0298 —0.2465
CAS 6/11 (full) —2610.70489 7.3706 —0.0175 0.4224 0.0298 —0.2490

Table 6.11: Energy and properties for Lil. E is the total energy, i the dipole
moment, ¢ is the electric field gradient at nucleus X, and hZ , is the electric
field third derivative at nucleus X.

Wave function E 12 Q,I;; Q£z h’%;zz h’izzz
au Debye au au au au
Non-relativistic
HF —6925.3016 7.6676 —0.0170 0.7468 0.0220 —11.6121
CAS (6/8)“ —6925.3592 7.5171 —-0.0175 0.8768 0.0226 0.6198
CAS (6/11) —6925.3875 7.5958 —0.0172 0.8224 0.0226 —11.4476
Relativistic
DHF (noep) —7098.8586 7.6333 —0.0172 0.6213 0.0207 —3.1928
DHF —7098.8586 7.6333 —0.0172 0.6213 0.0207 —3.1926
CAS 6/8 (noep) —7098.9359 7.5932 —0.0180 0.7005 0.0209 —2.6497
CAS 6/8 (skipep) —7098.9328 7.5932 —0.0180 0.7004 0.0209 —2.6498
CAS 6/8 (full) —7098.9328 7.5932 —0.0180 0.7004 0.0209 —2.6498
CAS 6/11 (noep) —7098.9458 7.5441 —0.0174 0.6928 0.0215 —3.4268
CAS 6/11 (skipep) —7098.9427 7.5440 —0.0174 0.6924 0.0215 —3.3867
CAS 6/11 (full) —7098.9427 7.5440 —0.0173 0.6924 0.0215 —3.3857

a This calculation has most likely converged towards an wrong state
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The results of the calculations on LiCl are given in Table 6.9. The rel-
ativistic effects are still moderate (< 1%), and consequently the difference
between the different relativistic CAS calculations are completely negligible.
Also, it appears that relativity and correlation are non-additative, but since
both correlation and relativstic effects are quite small it is not so important.

For LiBr we choose a active space analogous to the LiCl calculation: 6
electrons in the 4p4d5p orbitals. The results of the calculations are given
in Table 6.10. As for LiCl the effects of relativity are small for the both
dipole moment and the Li electric field (EF) derivatives (relativity: 1 — 2%;
correlation 1 —4%). For the Br EF derivatives the effect of correlation is more
than 10% for the Br EFG and 30%-+ for the Br EFT. The relativstic effects
are larger than correlation effects for the Br EFT, and the non-additivity of
correlation and relativistic effects are around 1% for the Br EFT.

Again, for Lil we choose a active space analogous to the LiCl calculation:
6 electrons in the 5p5d6p orbitals (CAS 6/11). We have also performed the
calculations with the smallest balanced active space consisting of the 5p and
5d orbitals only (CAS 6/8). The results of the calculations are given in Table
6.11. As for the previous molecules the effect of relativity is quite modest
on the dipole moment, and the Li EF derivatives. For the I EF derivatives
the effect of relativity is quite large (= 20% for ¢!, and more than 70%
for hl,,.). The non-relativistic CAS (6/8) calculation shows some of the
problems we have experienced obtaining good start orbitals for heavy atoms.
The converged CAS (6/8) state is obviously not the right one, most likely
caused by a bad KR-MCSCF start guess.

6.2.4 Discussion

Although we expect the LiX, X = F, CI, Br, I, to have similar electronic
structure we see a change in the choice of correlating orbitals. Due to the
mathematical structure of the Schrodinger or Dirac equation there are no 2d
orbitals to correlate the occupied 2p orbitals in LiF, hence the most important
correlating orbitals are the 3p orbitals. LiCl, LiBr, and Lil all have nd
orbitals, and they turn out to be the most important ones for correlation.
Apart from the underlying mathematical structure this can also be understod
qualitatively: the fluorine atom is relatively small and the most important
dynamical correlation is the “in-out” correlation which is cared for by the 3p
orbitals. As chlorine, bromine, and iodine are larger atoms, the 3p, 4p, or 5p
electrons avoid each other by staying on different sides of the atom (angular
correlation). The angular correlation is cared for by the nd orbitals.

As a side-remark we also note that obtaining start orbitals are not trivial
for the heavier atoms (see Section 3.3.1 for more details).
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For Lil we did also perform the non-relativistic HF' calculations with a
larger uncontracted 28s25p19d10f basis set for I and a 12s9p6d basis set for
Li [13]. The values obtained are 7.46 Debye for the dipole moment, —0.020
au for the Li EFG, 0.791 au for the I EFG, 0.022 au for the Li EFT, and
17.28 au for the I EFT. Comparing with the values obtained in this work
we see moderate effects (< 10%) for all properties except the I EFT which
changes sign! A relativistic DHF calculation using the larger basis set yields:
1.045 au for the I EFG and 7.27 au for the I EFT. The differences compared
to the Sadlej basis set we employed are quite large. As the EFT transform
as Y, (spherical harmonics with [ = 4) the EFT is zero for orbitals with
I < 2 (in LilI the I 1s orbitals can give of course give a contribution due to
polarization). This means the EFT is very sensitive to the quality of the d
basis functions.

Finally, we conclude that both relativity and correlation are needed. For
the lighter atoms it is very good approximation to neglect relativity, but
for the heavier atoms the effect of relativity can be dramatic. Also, from
the Lil calculations we see that relativity and correlation are non-additive,
so there is no easy way out, and we have to deal with correlation at the
relativistic level. Also, for these molecules that are almost no effect of e — p
relaxation. The difference in properties between the noep, skipep, and full
calculations presented here are negligible. The largest effect is for the CAS
6/11 calculation of Lil, where the effect is 1% for the I EFT. As the e —p part
of the Hessian was the most expensive part of the calculations it is desirable
to not include it.
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Chapter 7

Final summary and Future
Research

In this thesis we have presented the implementation of a direct Kramers
restricted four-component multi-configurational SCF program. The KR-
MCSCF method presented is currently the most rigourous way to include
relativistic effects along with correlation effects, since we, in contrary to the
no-pair CI, MBPT, and CC-methods, allow the positronic orbitals to re-
lax. We have also presented the average-of-configuration Dirac-Hartree-Fock
method which can be used for generating start orbitals for the KR-MCSCF
optimization.

We have chosen to work within the four-component framework due to
the relatively simple appearence of operators and the often simple formal-
ism compared to the very complicated nature of the regularized methods
where the small component is eliminated. The current problem with the
four-component methods is the expensive nature: (i) many electrons and (ii)
the small component basis set. Problem (i) is also present in non-relativistic
or approximative relativistic approaches and is as such not a four-component
problem. The only way to deal with this is to use effective core potentials
or pseudo-potentials. Problem (ii) is somewhat related to problem (i), but
the problem is the numerous (SS|SS) and (SS|LL) (plus the Gaunt or Breit
interaction) two-electron integrals, however through several approximations
it is possible to neglect many of these. Through these approximations we
remove the unneeded integrals and we approach the computational scaling
of the more approximative methods keeping the simple four-component for-
malism. We believe this is clearly the best way to procede (approximations
within the 4-component formalism versus approximations to the formalism).

With the few preliminary applications presented in this thesis we have
discovered a number of interesting items:
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The difficulty of producing orbital start guess for the MCSCF proce-
dure.

The apparent negligible effect of relaxing the positronic orbitals for
energy and some selected properties (more research on this is clearly
needed).

The non-additivity of relativistic and correlation effects, which of course
is not a new discovery, but clearly indicates the need for correlated
relativistic methods.

The potential applications for which the presented KR-MCSCF program
can be used is numerous. We will just mention a few applications and would
have liked or is planning to investigate, and a few selected improvements:

The effect of e — p rotations on properties, especially on magnetic prop-
erties such as spin-spin couplings or properties that depend critically
on the small component density such as parity violating energy shifts.
As the spin-spin coupling is a second-order property this requires the
implementation of a KR-MCRPA program. For the parity violating
properties we have to deal with molecules in complex or quaternion
point groups, which, at the deadline of this thesis, did not work to our
full satisfaction.

Investigate actinide and lanthanide compounds. Due to the very com-
plicated electronic structure of the actinides and lanthanides a multi-
configurational approach is often mandatory.

ESR properties: hyper-fine couplings and g tensors. This requires the
implementation of the time reversal anti-symmetric density matrix.

Magnetic properties in general. Due to the inherent relativistic ap-
pearence of magnetic operators these are often best described in the
four-component frame-work even for “non-relativistic” molecules.

All the same kind of applications where non-relativistic MCSCF pro-
grams have been applied, which include, but are not limited to, disso-
ciation of molecules, chemical reactions, properties for excited states,
and much more.

Improve the implementation of the program (see chapter 5 for more
details). Beside the approximations mentioned above to avoid calcu-
lating many integrals, all the non-relativistic auxiliary optimization al-
gorithms can be employed, for example, the transformation of orbitals
to improve diagonal dominance of the Hessian.
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e Better orbital start guess: MP2 natural orbitals are clearly preferred
over hj-virtuals, average-of-configuration or canonical Dirac-Hartree-
Fock orbitals. The relaxed MP2 density matrix is under implementa-
tion, so MP2 natural orbital start guesses should be available soon.

e The MCSCF is particularly suited for retrieving the static correla-
tion. It would be a very interesting project to implement post-MCSCF
methods for getting dynamical correlation: CASPT2 (or other multi-
reference MBPT methods) or multi-reference CI.

In conclusion, we believe the future is looking bright for four-component
methods, and the presented KR-MCSCF program is the wave function mod-
ule for a general toolbox for the calculation of correlated properties within a
four-component relativistic framework.
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Chapter 8

Dansk Resumé

Dette er min Ph.D. afhandling, som er resultatet er 4 ars studier og forskning
ved Kemisk Institut, Syddansk Universitet i Odense.

Vi starter med at argumentere for ngdvendigheden af en fire-komponent
relativistisk multi-konfigurational selv-konsistent felt (MCSCF) metode. For
det forste er beskrivelsen af relativistiske effekter i molekyler ngdvendig for
en kvalitativ og kvantitativ beskrivelse af molekyler der indeholder tunge
atomer. Det kan ogsa veere ngdvendig med en relativistisk beskrivelse for
meget, preecise beregninger pa atomer med kun lette atomer. Endvidere er
en relativistisk beskrivelse ofte foretrukket for bl.a. magnetiske egenskaber.
For det andet er en fire-komponent beskrivelse den bedste og simpleste for-
malisme til at beskrive relativistiske effekter. For det tredje er en MCSCF
metode ngdvendig for en kvalitativ beskrivelse af den klasse af atomer og
molekyler hvor der er naer-degenerede tilstande (statisk korrelation).

I Kapitel 2 gives en kort introduktion til de begreber i relativistisk kvante-
mekanik som vi har brug for i de efterfglgende kapitler, f.eks. enkelt-partikel
Dirac-ligningen og fler-partikel Hamilton-operatoren.

I Kapitel 3 diskuteres average-of-configuration aben-skal Dirac-Hartree-
Fock formalismen. Metoden bliver f.eks. brugt til at generere start orbitaler
til MCSCF metoden.

Dem relativistiske MCSCF metode er netop emnet for kapitel 4. Selve
formalismen er tidligere publiceret [H. J. Aa. Jensen, K. G. Dyall, T. Saue og
K. Faegri, J. Chem. Phys, 104, 4083 (1996)], sa vi gennemgar blot teorien.
Dog introducerer vi den quaternionske formalisme for alle orbitale stgrrelser
samt diskuterer hovedpunkterne i implementationen. I kapitel 5 diskuteres
en raekke approximationer samt en raekke hjalpe algortimer for KR-MCSCF
bglgefunktionsoptimeringer. Herefter praesenteres i kapitel 6 et lille antal
indledende beregninger hvori det beskrevne MCSCF program benyttes.

I kapitel 7 opsummerer indholdet af denne athandling. Desuden gives der
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ogsa forslag til fremtidig forskning til videre forskning.

Resten af afhandlingen er et antal appendikser med udfgrlige detaljer
for udregningen af exponentialfunktionen pa quaternionske matricer samt
udregningen af forskellige Fock matricer, samt et lille antal manuskripter og
publicerede artikler.
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Summary of papers

Paper 1

In this paper, published in Physical Review Letters, 85, 3105 — 3108 (2000),
we present, a study of correlation effects on parity violating effects in HyOo
and HySs. In the paper we present four-component relativistic DHF, MP2,
and CCSD(T) results of the matrix elements (see Egs. (1.1) and (1.2) in
Chapter 1)

(0] 0a(r)y5|0) (8.1)

needed to calculate the parity violating energy-difference as a function of the
dihedral angle in HyOs and HySs. The correlated expectation values was
calculated numerically as there is currently no analytic implementation of a
four-component relativistic e — p relaxed MP2 or CCSD(T) density matrix.
The conclusion was that correlation effects were small, in accordance
with a prediction by Laerdahl and Schwerdtfeger [1], since the operator is
very core-like (the operator is essentially a delta function a the nuclei).

Paper 11

In this paper, published in Physical Review A, 63, 022505 (2001), we present
a study of the hexadecapole coupling constant of 2] in Li*?"I. The project
was motivated by a recent publication by Cederberg et al. [2] claiming to
have experimentally measured the hexadecapole coupling for *"I. The goal
was to either confirm or reject their result. In the paper we review the the-
ory for calculating the quadrupole and hexadecapole couplings constants,
and present the formulae for the traceless electric field gradient, the elec-
tric field second derivative, and the electric field third derivative. The final
value of the hexadecapole coupling constant calculated from self-consistent
nuclear structure calculations and four-component relativistic Dirac-Hartree-
Fock calculations is about three orders of magnitude smaller and of opposite
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sign that the experimental value suggested by Cederberg et al. We speculate
that their experimental value originates from the second-order quadropole
(“pseudo-hexadecapole”) interaction, and not from the hexadecapole cou-

pling.

Manustript I

In this manuscript we present the theory for analytical molecular gradients
for Dirac-Hartree-Fock used for geometry optimizations. We also discuss the
use of screening in the calculation of relativistic molecular gradients. As a
preliminary applications we present a geometry optimizations on iodoben-
zene.

Publications not included in this thesis

o V. Kello, P. Pyykko, A. J. Sadlej, P. Schwerdtfeger, J. Thyssen. The
nuclear quadrupole moment of *'Zr from molecular data for ZrO and
ZrS. Chemical Physics Letters, 318, 222-231 (2000).

In preparation

e J. Thyssen and H. J. Aa. Jensen: Relativistic four-component multi-
configurational self-consistent-field theory for molecules: Implementa-
tion.
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Appendix A

Evaluation of Matrix
Exponentials

In order to obtain the new orbitals in each macro iteration it is necesary to
calculate

anew = Qcold €xXp (_QK') ’ (Al)

where @k is the anti-hermitian orbital rotation operator. For simplicity 9&
is written as k in the rest of this section.
The definition of the matrix exponential appearing in Eq. (A.1) is

exp (—r) = Y % (—k)". (A.2)

There are many ways to to evaluate Eq. (A.1). Below we will give three
different ways to do it.

1. The simplest is just to use the Taylor series to some order, for example
a first order expansion:

exp(—k)~1—k (A.3)

However, 1 — k is not unitary, and it must be orthogonalized, e.g. by a
symmetric orthogonalization. The resulting orbital rotation operator

U=(1-k)S(k)2, (A.4)

with S(k) = (1 — k)" (1 — k), is correct through second order as

U=1-k+ %ng + O(K%) (A.5)
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where we have used

S(k) = (1~ &) (1~ k) A
:1—{—%&2—}—0(&4). (A.6)

This procedure has two main advantages: (i) It works for quaternion
matrices, and (ii) it does not involve any diagonalization procedure
as the symmetric orthogonalization procedure can be formulated iter-
atively. This procedure is used in the sirRius MCSCF wave function
module in DALTON [1].

. If k is a real or complex matrix the matrix exponential of Eq. (A.1)

can be evaluated by as follows: The matrix
A =—ik (A7)
is a Hermitian matrix!, thus it can be diagonalized
UTAU = ), (A.8)
where A is a real diagonal matrix. Hence,
k =1iA = iUAUT. (A.9)
Using that U~! = U' and the identity
exp (BAB™') =Bexp(A)B™* (A.10)
we get
exp (k) = exp (iU')\UT) (A11)
=Uexp (iA) U'.

This method has the advantage that we evaluate the matrix exponen-
tial is evaluated analytically. However, this methods has two major
drawbacks. First, it does not work for quaternion matrices. Second, it
always involve complex algebra even if k is real.

. The most elegant way to evaluate Eq. (A.1) is to do something similar

to Dalgaard and Jgrgensen [2]. The matrix —k? is a Hermitian matrix,
since

(A.12)

INote that this is not true for a quaternion matrix, which is why this method cannot
be used for such matrices.
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where we have used that k is anti-Hermitian. Since —k? is Hermitian
there exists a matrix V that diagonalizes it

Vi (-k?)V =&, (A.13)
or
V&V = (-k?), (A.14)

where 6% is a real diagonal matrix. Using the definition of a matrix
exponential, Eq. (A.2), we get

exp(~K) = ()"

;0 1 on 1 2n+1
_ nZB S (—R) - nz:% @ F) (A.15)

= L 2nvy7t = 1 2n+1 o—1x77
Vnz::()mé A% Vgi(%ﬂ)!é 0 'Vik
=Vecos(8) VI — Vsin (6)6 'Vik.

A potential problem arises if an eigenvalue is close to zero, since
will give zero divided by zero for x = 0. This is easily taken care of by
using a second order Taylor expansion of *2* around zero

sinx
T

sin x T
=1-— A.16
. 5 (A.16)
for eigenvalues close to zero. The advantage of Eq. (A.15) is no ap-
proximations are involved and that it works for real, complex, and
quaternion matrices (unlike the previous method). It is also important
to note that no complex algebra is needed if k is real. However, the

method has the drawback that it requires one matrix diagonalization.

In the program method 3 is used (for no other reason than being the most
mathematically elegant method), but method 1 has also been implemented
for real matrices in order to facilitate exact comparisons with DALTON in the
debugging phase.
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Appendix B

Quaternion MO integrals and
Fock matrices

In this chapter we derive the formulae needed for the construction of the
quaternion Fock matrices. We also discuss the double quaternion two-electron
integrals and how to use them to construct auxiliary Fock matrices and one-
index transformed auxilliary Fock matrices.

B.1 “F¢ and 9FV

The “core” and “valence” Fock matrices F¢ and FV! are defined by

hpq+z (pg|ii) — (piliq) — (p2]2q)),
—EZDuu((pqluv (pv|uq)) ZDM (pq|uv) — (pvlug))

1
+ 5 D Dus (pa|uv) — (7] uq)) ZDW (pg|av) — (pv|ug)),

(B.1)

where D, is the active part of the one-electron density matrix (Eq. (4.49))
and (pq|rs) are molecular two-electron integrals. The ?F¢ and ?FV Fock
matrices are also known from closed shell DHF and average-of-configuration
open shell DHF (e.g., see Chapter 3).

!The designation “core” (“inactive”) and “valence” (“active”) Fock matrices is some-
what arbitrary, since there might be core orbitals among the active (“valence”) orbitals.
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QFC and YFV are used for the generalized Fock matrix with second index
inactive

Fpi = Z (Dirhpr + DithF)

r

_ 1 i
+ Z Pir,st (pT | St) + Z PiF,st (p7'|$t) + 5 Z PiF,Et (p7'|5t)

rst rst rst (BQ)
1 1 1
+3 Zt: Pz st (p7|s) + 5 Zt Pt (prst) + 5 Zt Py st (pr]st)
rSs s s

=2(E; +F))

The generalized Fock matrix is used for calculating orbital gradients and
various sigma vectors (Sec. 4.7).

In the quaternion formalism F¢ and FV are defined by:

QrC _ C

qu—qu+qu7’ (B3)
QrV _ v :
qu—qu+qu

The one-electron part of ¥FC is just the quaternion one-electron Hamiltonian
thq = hpq + hpg].
The two-electron part is, in fact, of the same type as FV, which can be

seen from:
F§ = hpg+ = E:DU (pqlij) — (piliq)) ZD” (pql) — (p7179))
5]
1 . .
+—ZDZ-J- (pqliz) — (p7lig)) ZDU (pq|7j) — (pjl7g))

—hpq+z (pglii) — mllq)—(pilfQ)),

(B.4)

using D;; = 26;; and (pq|ii) = (pg|w).

Instead of constructing the matrices directly in MO basis, which require
two-electron integrals with one general and three occupied indices?, both ®FV
and @FC are constructed in AO basis by backtransforming the quaternion

*We only need the general-occupied block of F© and FV, i.e. only FS, for ¢ occupied
in Eq. (B.1), which only require integrals with one general and three occupied indices.
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density matrices to AO-basis [1]

1
QFI%AO =%h,, + ZDS,\%O ( UV KN) — 3 (,u/\|/<;y))

- _ZZGADK)\A (uA|kv)

A=1 kA 1 (B5)
£ = S D (o) - 5 (ol )

KA

3
1
IS DI ()

A=1 k)X

where ?D%49 and @DV40 are the backtransformed inactive and active AO
density matrices, respectively. ey (A =0,...,3) are the quaternion units 1,
7, J, and k, respectively. Note that for the imaginary parts of @F%49 and
QFV40 only the exchange part contributes: the Coulomb part is zero as D4
are anti-symmetric matrices for A=1,...,3.

The matrices form Eq. (B.5) are standard Fock matrices from closed
shell Hartree-Fock and can be constructed by any non-relativistic integral
generator [1].

B.2 One index transformed Fock matrices

For the orbital part of the orbital sigma vectors, Eq. (4.38), we need Fock
matrices from one-index transformed integrals:

= hpq + Z ( (palii) — (pilig) - (p7|7‘1)) : (B.6)
where
hpg = Z ((bprhrg = Pprbrg) + (bprhrg — hprbrg)) (B.7)
and

—~—

(pq|rs) = (pq|rs) + (pq|7s)
=Y (bye (tqlrs) — (pt|rs) by + byi (Fg|rs) — (pt|rs) byy)

+ ) (bre (pglts) — (palrt) bes + bri (pq|ts) — (pq|rE) brs)
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Eq. (B.6) can now be rewritten as

hpq+Z (pgii) — (pi]iq) — (p7|79))

N (B.9)
+ Z (pa|@) — (pil7g) — (pi]ig)) -
The first line of Eq. (B.9) is just the one-index transform of F,:
Z ((bpr Fg = Fibrq) + (bor Frg — Fabry)) (B.10)

r

whereas the second line can be expanded to:

szr pQ|TZ pz|7‘q +szr pq|7‘z) (pﬂT(]))

+ sz’f ((pglri) — (pilTq)) + Y bir ((pg|72) — (p2| 7))
B.11
+ 2 —bei ((palir) = (prlig) + 3 —be (palr) = (pr[7g)) (B

ir

+ Z —bri ((pqlir) — (pFliq)) + Y —bm ((pglor) — (priag)) .

ir

Defining a new matrix

= 3 b (alr) = 0ilr0) + 3 b (i)~ i)

(B.12)
+ Zbﬁ (pg|7i) — (pilTq)) + Zb ((pg|72) = (p2l7q)),
and using that the trial vector is anti-Hermitian (b,; = —b},) we can rewrite
Eq. (B.11) to
qu + (qu)* ) (B]‘3)

which is the Hermitian part of A, which is a standard Fock matrix con-
structed using a modified density matrix D,; = b;. — or equivalently: calcu-
lating the Fock matrix using only the Hermitian part of the density matrix
D'I'Z" B

The quaternion F¢ is easily obtained after some trivial algebra

QFPCQ = chq + qu]
=5 (%, OFE — 9FC %, ) + Hp{94,,}, (B.14)
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where Hp takes out the Hermitian part of a matrix and ?A,, is a quaternion
Fock matrix constructed using a quaternion density matrix ¢D,; = ?b;,..
Similarly, one obtains the quaternion FV matrix as

QFP‘; = Fp‘g + quj
- Z (“bpr QFr‘g - QFp‘: “brg) +Hp {“Byq} (B.15)

where we have defined another Fock matrix

= D}bur ((pg|v) — (pvlrq)) + > Dy bar ((pg|rv) — (pv|rq))

+ ) Disbur ((pgl ™) — (pv|7q)) + Y Dybar ((pg|70) — (p0|7q)) .

(B.16)

Again, this is a standard Fock matrix, this time constructed using a density
matrix Dy, = Y. Dy by = ((DV)Tb),r — or in the quaternion formalism:
a standard quaternion Fock matrix constructed using a quaternion density
matrix ©D,, = ((QDV)T Qb)

or

B.3 Two-electron integrals

For orbital indices p, ¢, r, and s there are 16 integrals arising from all possible
combinations of barred and unbarred indices:

g ey gt
pq|rs), q|rs), \pq\rs), \pq|rs),
(walrs), (al7s). (palrs). (val7s), (B.17)
(alrs), (palrs), (pqlrs), (pal7s)

With a spin-free Hamiltonian (e.g., a non-relativistic Hamiltonian) it is pos-
sible to reduce the number of integrals in two ways. First, p and p are pure
spin functions: for a given orbital p then p is pure 3 spin and p pure « spin or
vice versa. Many integrals vanish as the o and 3 spin functions are orthog-
onal. Furthermore, all the non-zero integrals are all related, which leaves us
with only one unique integral. Second, it is possible to reduce the number
of integrals further by exploring the fact the the orbitals can be made real,
hence for example (pg|rs) = (gp|rs) etc. Thus, it is only necesary to store
integrals with p > ¢, r > s, and, by using particle interchange symmetry,
compound index (pg) > (rs).
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However, in the relativistic case neither the former nor the latter reduction
is possible. It is possible, however, to do obtain reductions analogous to
above. First, using time-reversal symmetry and that (pg|rs) = (gp|sr)”, we
can establish the following relations:

s mh
pq|rs pq|r ) pq|rs) = \pq|rs) ,
(pa|7s) = — (0qlr3)", (pg|rs) = — (B7I7s)" (B-18)
(Pq|rs) = — (pq|75)", (pq|rs) = — (Pq|75)",

which reduce the number of integrals by a factor of 2. Second, we can save
an additional factor of two using that (pq|rs) = (gp|sr)”, allowing us to only
save integrals with r > s.

We can, in fact, get away with saving only six of the integrals above, since
(pq|rs) = (¢p|75)" and (pq|rs) = — (gp|Fs)”, leaving us with the following
integrals which we put in a 4 X 3 matrix:

(pQ|TS)1,1 (pQ|T3)1,2 (pq|7‘8)1’3

(pq|7“8)2,1 (pQ|TS)2,2 (pQ|T3)2,3 _

(PQ|73)3,1 (pq|7’8)3,2 (pQ|7"3)3,3

(pg|rs)y; (Pa|rs)so (Pa|Ts)ys
R((pq|rs)) R((pq|r3)) R((Pg|Ts))
3((palrs)) S((pa|rs) S((pal7s) | p 1)
R((pq|r5)) R((pq|rs)) R((pg|rs)) '
S((pglrs)) S((pglrs)) S((pglrs))

For real points groups (D, Cy, in Doy, and subgroups) only the first row is
non-zero. For complex point groups (Cy, Dy, and Cyy, the first two rows of
integrals are non-zero. For quarternion groups all four rows of integrals are
generally non-zero. We call this the (NZ,3) format, since the dimensions of
the matrix is NZ x 3, where NZ is 1, 2, or 4 for real, complex, or quaternion
point, groups, respectively.

A charge distribution can be written in quaternion form:

%(pq) = R(pq) + S(pg)i + R(p7)j + S(pq)k- (B-20)

The two-electron integrals, which are integrals over two charge distributions,
can be written in a double-quaternion (rather, in a two-dimension quaternion
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vector space) format:

@ (pg|rs) = (* (pg)|(rs))
= (R(pg)|R(rs)) + (S(pg) | R(rs))
+ (R(pq) |R(rs)) j1 + (S(pq) |R(r5)) kr
+ R(pg)|S(rs)) iz + (S(pq) |S(rs)) 17
+ (R(pg)|S(rs)) jria + (S(pq) [S(7s)) kit (B.21)
+ (R(pg) |R(r35)) Jo + (S(pa) | R(r5)) i1 ]2
+ (R(pq) |R(r5)) j1J2 + (S(pq) | R(r3)) k1J2
+ (R(pg) [S(r5)) k2 + (S(pg) [S(r5)) nky
+ (R(p) S(r5)) Jika + (S(p7) |S(r5)) k1o

Note that we have one real part and 15 imaginary parts, where the imaginary
parts of a specific electron anti-commute, e.g. 7;j; = —j1%1, and the imaginary
parts of electron 1 and electron 2 commute, e.g. i1jo = joi;. All sixteen
integrals are best visualized in a 4 X 4 matrix:

(R(pg) [ R(rs)) (R(pg)|S(rs)) (R(pg)|R(rs)) (R(pg)|S(rs))
(S(eq)[R(rs)) (S(pa)|S(rs)) (I(pa)|R(rs))  (S(pa)[S(rs)) | 5 9
(R(pg) |R(rs)) (R(pg)|S(rs)) R(pq)|R(rs)) (R(pg)|S(rs)) '
(S(pg)R(rs)) (S(pg)|S(rs)) (S(pg)|R(rs)) (S(pg)|S(rs))

For real point groups (Dap, Co, in Dy, and subgroups) we only need the
diagonal of the matrix:

] (B.23)
0 (S(pg)|3(rs))

for complex point groups (Cs, Dy, and Cy;,) we only need the 2 x 2 diagonal
blocks:

whereas we for quaternion groups (C; and C}) need the full 4 x 4 matrix (Eq.
(B.22)).
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All 6 integrals in Eq. (B.19) can be written from the double quaternion
integrals in Eq. (B.22):

(pq|rs) = [(R(pq) |R(rs)) — (S(pg) |S(rs))]
+ 1 [(R(pg)[S(rs)) + (S(pg) [R(rs))]
(pq|r3) = [(R(pq) |R(r3)) — (S(p7)[S(r3))]
+ 1 [(R(pg)[S(r5)) + (3(pg) |R(r5))]
(Pq|r3) = [— (R(pq)|R(r3)) — (S(pq)|S(r3))]
+i[+ (R(pg) |3(r3)) — (S(pg) |R(r3))] (B.25)
(pqlr3) = [(R(pq) |R(r3)) — (S(pq) |S(r3))] '
+ 1 [(R(pg)[S(r3)) + (S(pg) |R(r5))]
(pq|rs) = [(R(pq) |R(rs)) — (I(pg)|S(rs))]
+i[+ (R(pg) |3(rs)) + (I(pg) |R(rs))]
(pq|rs) = [ (R(pq) [R(rs)) — (S(pq)|S3(rs))]
+i[= (R(pg)[S(rs)) + (S(pg) |R(rs))]
For example, (pg|rs) can be written as
(pq|rs) = (R(pg) +1iS(pqg) | R(rs) +iI(rs))
= [(R(pg) |R(rs)) — (S(pg) [S(rs))] (B.26)
+ 1 [(R(pg)[S(rs)) + (S(pg) |R(rs))]
and (pq|rs) as
(Pa|rs) = = (qp|rs) = — (pa|sr)”
= — (R(pq) +i3(pq) | R(sr) +1iS(sr))
= [~ (R [R(s)) + (S(P7)|S(s7))
— i [~ (R(pg) [3(57) — (3(p) [ R(5r))] (B27)
| )

+i[= R(pg)|3(rs)) + (3(pg) [R(rs))],

where we in the last equation have used the following relations for the charge
distributions rs and sr:

(B.28)

From this we see that (pg|rs) and (pg|rs) can be generated from the dou-
ble quaternion integrals (Eq. (B.22)). The remaining four integrals can be
treated analogous.



B.4 The two-electron density matrix P 165

B.4 The two-electron density matrix P

For the wave function optimization we only need the P™* density matrix:

P = (L

pq,Ts

it | R). (B.29)

pq,Ts

We use the two-electron density matrix P in the (NZ,3) format derived
for two-electron integrals above (Eq. (B.19)). This is essentially the same as
storing it in spinor basis. We do not store it in the double-quaternion format,
Eq. (B.21). One of the big advantages of the double-quaternion format is the
permutation relations, for example:

R(pqg) = R(qp),

R(pD) = —R(ap), (B:30)

allowing us to use a triangular index (7s) in (pg|rs), because integrals (R(pq)|R(rs)) =
(R(pq)|R(sr)). However, in general,

Pripg)(rs)  Pripg) R(sr)s (B.31)

since Ppgrs # Ppq,sr- S0 in order to use the double-quaternion format for den-
sity matrices we would have to use full indices for both electron 1 and electron
2. The storage requirements would be 4n,n? ., for the double-quaternion for-
mat whereas it is 3n,nj, + O(nd,) for the (NZ,3) format. On the other
hand one may expect simplifications in the formulae for the auxiliary Fock
matrix (the topic of the following section) using the double-quaterion format

for integrals and density matrix, but, in fact, we have found none.
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B.5 The auxiliary Fock matrix YF¢

F? is defined in Eq. (4.52) (for simplicity we leave out the ++’s on the
density matrices):

ch(?] = Z (pv|zy) Ppoay + (p0]2Y) Pyo oy
vTY
1, 1, ., _
+ B (r9|2y) Ppw,zy + 3 (p¥|2Y) Pyo,ay

1 1 .
+3 (v|7y) Ppozy + 5 (pv|2Y) Ppo,ay

o ) (B.32)
Fpg = Z (pv|2y) Pao,oy + (00]2Y) Pao,ay
vTY
1 |
+ 3 (po|2y) Pgozy + 3 (pv|7Y) Pyo g
1 B 1 B
+ B (pv|zy) Pgozy + 3 (pv|2Y) Ppo,ag-
The quaternion auxiliary Fock matrix, QFQ, is defined as
Q _ Q-
Qqu = Fp% + Fpd, (B.33)
i.e.
Q
Qqu;O = m(FIgI)’
Q9 _ Q
qu;l - %(qu)’ (B 34)
Q Q )
Qqu;2 %(qu),
Q
VF s = S(Fpa).

Expanding the right hand sides of Eq. (B.34) inserting the integrals and
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density matrices in the (NZ,3) format we get:

QFp?z;O = Z

vTY

(pv|xy)1,1 Pooaysi1 — (pv |333/)2,1 Poo,ay;2,1

1 1
+ 2 (pv|xy)3,1 Ppo,ay31 — 2 (pv |$y)4’1 Poo,aysa1

1 1
+ 2 (pv|2Y), 2 Pyoayiie — 2 (pv[2Y) 5 Povays22 (B.35)
+ (pv |$y)3,2 Ppo,ay3,2 — (pv|xy)472 Pio,ay;a,2

1 1
+ 2 (pv|a:y)1,3 Pooey;1,s — 2 (pv |xy)273 Poo,eys2,3

1 1
+ 2 (Up|xy)3’1 Pogays1 — 2 (Up|$y)4,1 Pygayiat;

QFP%;I = Z

vTY

(pv|3;y)1’1 Ppo,ay2,1 + (pv|:by)2,1 Poo,ays1,1

1 1
+ 9 (p1)|$y)3’1 Po,ayan + 2 (pv|xy)4’1 Po,aya1

1 1
+ 2 (pv|:vy)1,2 Poo,ay;2,2 + 2 (pv|:vy)2,2 Po,ay;1,2 (B.36)
+ (pv|:vy)372 Proays2 + (pv|:vy)4,2 Poo,ay;3,2

1
(pv|xy)1’3 Poo ey, — 9 (pv|xy)2,3 Py wy1,3

N — DN =

1
(vp|acy)3’1 Pygayan — B (vp|xy)4,1 Pyg,ays,1;

Q@
qu;2

(]

vTyY
(pv|xy)1,1 Pooays,s — (pv |xy)2’1 Poo,aya3
+ (pv |$y)3,2 Pygayin — (pv|xy)4’2 Pogay21

1 1
-3 (pv|7Y), 3 Ppoay;an + B (pv|2y)3 3 Pov,aysat (B.37)

1
+ 9 (pv|xy)1’2 Pogayaa — (pv |$y)2,2 Pygayan

1 1
D) (Up|a:y)3,1 Po,ay;1,2 + 2 (Up|xy)4’1 Poo,ay2,2

1 1
+ 5 (pv|$y)3,1 qu,af;y;l,3 - 5 (p’l) |xy)4’1 qu,my;2,37
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and

QFPC(2153 - Z

vTY
(pv |5UZ/)1,1 Poo,ay;a,3 + (pv|:by)2,1 Po,ay:3,3

+ (pv|xy)3,2 Pogay2,1 + (pv|xy)4,2 Pygay1,1
1

1
+ 5 (pv|xy)1,3 Pq'u,;cy;4,1 + 5 (pU |‘Ty)2,3 qu,wy;?ul (B38)

1
+ 2 (PU|$ZU)1,2 Pogaya + (pv|:ry)2,2 Pogay;3,1

1 1
+ 2 (Up|xy)3,1 P wy2,2 + 2 (Up|:vy)4,1 Poo,ay;1,2

1 1
+ ) (pv|xy)3,1 Ppo,ay2s + 2 (pv |$y)4,1 Pyo,ay;1,3-

The sum Zmy is a full summation over all active orbitals. However, it is
possible to restrict the full xy summation to a triangular x > y summation.
This will give a lower operation count. To use a triangular sum we need the
following relations, relating (pv|zy); ; to (pv|yz); ; and Pyy,zy;ij t0 Poyai g

pvlyz), ;= (vplzy),

1,1 1
pvlyz 21 = — (Up|xy)2’1 ’

pvlyz)s, = — (pv[zy)s,

pvlyx 41 =~ (pv|xy)4’1 )

polyz),, = — (pv]2y), ),

pulYz)ey = — (Pv]2Y)ss (B.39)
pvlyz 32 = (vp|:cy)3,3,

42 — (UP|$?J)4,3 )
1,3~ (pv|xy)1,3 )
2,3 = (pv|xy)2,3 )
3,3 = (vp|xy)372,

43 = — (vp|xy)4’2 )

pol|yx
pvlyx
pvlyx
pvlyx
pvlyx

(
(
(
(
(
(
(
(
(
(
(
(

' v e e e e e e e N N SN
N
N

and identical formulae for the density matrix elements.
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We can now write the final formulae used in the actual implementation

Q@ _
qu;O_

+ Z Z (pv |$y)1,1 Poosy;1,1 + Z Z (vp|xy)1,1 Pogoy;11

>y v

- Z Z (pv|xy)271 Pooeysz1 — Z Z (Up|333/)2,1 Pogey21

>y v

>y v

>y v

+ Z Z (pv |xy)3,1 qu,zy;3,1

>y v

— SO (polew)ss Proaysin

>y v

+ Z Z (pv |'Z'y)1,2 qu,wy;l,Z

>y v

— Z Z (pU|~’CZ/)2,2 Povay2,2

>y v

+ Z Z (Po]2y)3 5 Povays,2 + Z Z (vp]2Y)3 5 Pog.ay:3.3

>y v

- Z Z (pv|xy)472 Poooyne — Z Z (vp|:cy)4’3 Pogayas

>y v

T>Y v

x>y v

+ Z Z (pU |3:y)1,3 qu,my;1,3

>y v

- Z Z (pv|a:y)273 qu,:cy;2,3

>y v

+ Z Z (Up|$y)3’1 P’Uq,zy;3,1

x>y v

— Z Z (vp|$y)471 Pogaysans

T>Y v

(B.40)
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QR _
qu;l_

+ Z Z (pv|xy)1,1 Po,ay21 — Z Z (Up|$y)1,1 Pygay2,1

T2y v >y v

+ Z Z (pv|xy)2’1 Pyo,ayi,1 — Z Z (Up|$y)2’1 Pygayin

T2y v >y v

+ Z Z (pv|xy)3’1 qu,my;4,1

>y v

+ Z Z (p’l)|.%‘y)4’1 qu,my;3,1

>y v

+ Z Z (pv|3:y)1’2 Poo,ayp.2

>y v

+ Z Z (p’l)|l'y)2’2 qu,zy;l,Z

>y v (B41)

+ Z Z (pv|xy)3’2 Ppo,ays,2 — Z Z (vp|xy)3,3 Pogays,3

T2y v >y v

+ Z Z (pv|xy)4,2 Pooey:s2 — Z Z (Up|$y)4,3 Pog,ey;33

T2y v >y v

- Z Z (p’l}|$y)173 qu,wy;2,3

>y v

- Z Z (pv|$y)2,3 qu,zy;1,3

>y v

+ Z Z (Up|:ry)3,1 qu,zy;4,1

>y v

+ Z Z (Up|$y)4,1 qu,zy;B,l,

>y v
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QR _
qu;2_

+ Z Z (pv |35y)1,1 Po,ayss + Z Z (vp|:vy)1,1 Pog,ay3,2

>y v

- Z Z (pv|a:y)271 Pyo,ayas — Z Z (Up|acy)2’1 Pygayaz

T2y v

+ Z Z (pv |33Z/)3,2 Pogay1 + Z Z (vp|xy)3,3 Pooey;11

>y v

- Z Z (pv|a:y)472 Pogeyz1 — Z Z (vp|xy)4’3 Pooey2,1

>y v

>y v

>y v

>y v

>y v

- Z Z (pv|a:y)1,3 Py oy

>y v

+ Z Z (pU |:Ey)2,3 qu,zy;4,1

>y v

+ Z Z (p’l) |xy)1’2 qu,zy;3,1

>y v

_ Z Z (pv|33y)272 Pogay;a

>y v

— Z Z (Up|333/)3,1 Pq”vaﬂ’Q

>y v

+ Z Z (Up|xy)4’1 Py zy2,2

>y v

+ Z Z (p?) |$y)3,1 qu,zy;1,3

x>y v

- Z Z (pv|$y)471 qu,zy;2,3;

>y v

(B.42)
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and

QrQ _
qu;3_

+ Z Z (PU|$?J)1,1 Ppo,aya,3 — Z Z (vp|:vy)1,1 Pog,aysa,2

>y v >y v

+ Z Z (pv|a:y)2,1 Po,ay;3,3 — Z Z (vp|:vy)2,1 Pog,ay;3,2

>y v >y v

+ Z Z (pv|xy)3’2 Pygay1 — Z Z (vp|xy)3’3 Po,ay2,1

>y v >y v

+ Z Z (pv|xy)4’2 Pogoy;1,1 — Z Z (Up|xy)4,3 FPov.ay;,1

>y v >y v

+ Z Z (pv|a;y)1,3 qu,zy;4,1

T>Y v

+ Z Z (pv|xy)2’3 Py oy3n

T>Y v

+ Z Z (pv|my)1,2 qu,zy;4,1

>y v

+ Z Z (pv|:ry)2,2 qu,zy;S,l

>y v

+ Z Z (Up|$y)3,1 qu,zy;2,2

>y v

+ Z Z (Up|:ry)4,1 Poo.ay;1,2

>y v

+ Z Z (p’l)|$y)3’1 qu,zy;2,3

>y v

+ Z Z (p’l)|l‘y)4’1 qu,my;l,S;

>y v

(B.43)

Note that all the ) terms are, in fact, matrix multiplications, for example:

S 0ol29), s Py = (o) (Pon)”) - (B44)

v pq

The algorithm for the construction of QF? can now be written as:
1. Loop over integral distributions (--|zy) with > y in the integral file

(a) If (zy) is an active-active distribution then

i. Read integrals in double-quaternion format.
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ii. Transform integrals to (NZ,3) format.
iii. Add terms to quaternion ?F% matrix (Egs. (B.41)-(B.43))

B.6 The auxiliary Fock matrix with transi-
tion density matrix

The formulae for the auxiliary Fock, ?F?, constructed using the symmetrized
two-electron transition density matrix P is completely analogous to the for-
mulae for the normal ?F¢ (Eqs. (B.41) - (B.43)), except that the transition
density matrix P is used instead.

B.7 The auxiliary Fock matrix with one-index
transformed integrals

The formulae for the ®F? with one-index transformed integrals QF? is anal-
ogous to the normal ®F? (Egs. (B.41)) (B.43)) in the previous section,
except that the normal two-electron integrals are replaced with one-index
transformed two-electron integrals, i.e. we have terms like:

Z (pv |$y)1,1qu,my;l,1a (B.45)
vTY
which can be rewritten to
Z (ﬁ|$y)1,1 Pov oy, + Z (pv|@)1,1 Po,ay;,1- (B.46)
VXY Ty

The first term is just like a normal ®F® matrix (i.e., a number of “matrix
multiply”-like terms), i.e. can use Egs. (B.40) — (B.43) by simply replacing
the integrals (pv|zy) with pv one-index transformed integrals (pv|zy). The
second term:

Z(pv|acy)11 quizy;l,l = ZZ (zy|pv) 11 Poy,qui1y (B.47)

VLY

is a “dot product”-like term:
z Z (@Y |pv) 11 Poy,guin,1, = Z ((ﬁ|pv)1,1 QP--,qv;l,la) ; (B.48)
v Ty v

where (a;b) is the dot product between two vectors.
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It is easiest to calculate the one-index transform of the two-electron inte-
grals from the double quaternion format. We want to calculate

Q1Q2 (p~q|7“8) — (Ql(ﬁ’q)‘cb (T‘S)) (B.49)

which is just a usual quaternion one-index transform (like the first terms of
Eq. (B.14) and Eq. (B.15)):

(“(p9)|%*(rs)) =

D Vb (4(rg)|%2(rs)) — (% (pr)]| ¥ (rs)) Vbyg. (B.50)

The algorithm for the construction of QF? and QF? can now be written

as:

1. Loop over integral distributions (--|zy) with > y in the integral file

(a) If (zy) is an active-active distribution then

1.
ii.
iil.

1v.

V1.

Read integrals (pg|zy) in double-quaternion format.
Transform integrals to (NZ,3) format.

Add “matrix multiply”-like terms to the quaternion QFQ ma-
trix (Egs. (B.41)-(B.43)).

Loop over 1, is, jo, ko

A. One-index transform electron 1 yielding integrals (pg|zy)

. Transform one-index transformed integrals to (NZ,3) format.

Add “matrix multiply”-like terms to quaternion QF?Q matrix
(Egs. (B.41)-(B.43))

(b) If (zy) = (pv) is an general-active distribution then (the active-
active distributions are only needed for GAS/RAS wave functions)

i.
ii.
11i.
1v.

Read integrals (rs|pv) in double quaternion format.

Loop over 1, is, jo, ko

A. One-index transform electron 1 yielding integrals (7s|pv)
Transform one-index transformed integrals to (NZ,3) format.

Add “dot product”-like terms to quaternion ®F? matrix (Eq.
(B.48))

(c) else if (zy) = (vp) in an active-general distribution then

i.

... the same as for (zy) general-active.
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