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Introduction

At his first lecture on quantum mechanics in Michaelmas term 1945,
Dirac entered the room to find it jammed with students. He obviously
did not expect to see so many students at his lecture because he an-
nounced ’This is a lecture on quantum mechanics.’ No one moved. He
repeated the announcement. Nothing happened again.

S.SHANMUGADHASAN (1987) [2]

0.1 General overview

Even though P. A. M. Dirac, the originator of the relativistic wave equation for the electron,
stated that relativistic effects were[3]

of no importance in the consideration of atomic and molecular structure and
ordinary chemical reactions,

it has become increasingly clear during the past few decades that in many areas of chem-
istry such effects may not be neglected [4, 5]. Discussions of relativistic effects are now
entering basic chemistry textbooks [6], and there is a rapidly expanding literature on
the subject [7, 8, ?]. This acknowledgement stems largely from the extensive progress
in the development of methods and technology which has made chemical systems con-
taining heavy element atoms accessible for computational studies. It is found that the
non-relativistic Schrödinger-equation fails to give an adequate description of such sys-
tems. A well known example is the relativistic effects on the band structure of metallic
gold[9, 5]. Non-relativistic calculations overestimates the gap between the 5d and 6s band
and predicts absorption in the UV region, which would give gold an appearance similiar
to that of silver. In atoms, relativity generally leads to a contraction of s and p orbitals
and (indirectly) to an expansion of d and f orbitals. In addition the spin-orbit coupling
causes the fine structure of atomic spectra. The effect of relativity in molecular systems
is more uncertain and is currently an area of active research. The interest in the effects
of relativity sparked in 1992 the establishment of the programme ”Relativistic Effects
in Heavy Element Chemistry and Physics”(REHE), sponsored by the European Science
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Foundation [10]. The goal of this programme is to spur interest and facilitate cooperation
among European scientists in the field.

The starting point of relativistic molecular calculations is the one-electron Dirac oper-
ator in the external field of fixed nuclei [11, 12, 13]. The two-electron interaction is usually
represented by the standard Coulomb interaction. This operator is clearly not Lorentz
invariant, but may be considered as the zero-order term in a series expansion of the full
two-electron interaction, which is not available in closed form. First order corrections may
be added in the form of the Gaunt or Breit terms. The effect of these corrections on
molecular properties is not very well understood, but they appear to be small. The re-
sulting Dirac-Coulomb(-Gaunt/Breit) Hamiltonian leads to a considerable increase in the
computational effort as compared to the corresponding non-relativistic electronic Hamil-
tonian. This is due to the fact that that the Dirac operator contains spin and leads to
a 4-component rather than scalar wave function. In addition the wave function can gen-
erally not be chosen real, thus forcing the use of complex algebra. Consequently, several
approximative approaches have been investigated. These approaches are usually based on
a transformation of the Dirac operator to a truncated two-component form and a sub-
sequent separation of spin-free and spin-dependent terms [14]. The spin-free terms (e.g.
the spin free no pair Douglas-Kroll operator [15]) are straightforwardly incorporated in
conventional methods and codes, whereas spin-dependent terms may be added at a latter
stage in the calculations, as in spin-orbit CI[16] Another possibility is to use the Dirac-
Coulomb Hamiltonian or quasi-relativistic operators to generate relativistic effective core
potentials(RECP) [17, 18, 19, 20].

During the past 15 years several 4-component molecular Dirac-Fock codes have been
developed[21, 22, 13, 23, 24, 25]. The first basis set calculations were flawed due to the
disregard of the coupling between the large and small components which must be reflected
in any basis set expansion [26, 27]. Also, there has been considerable confusion over the
variational foundation of the method[11, 28]. The Dirac-Coulomb Hamiltonian generates
both positron and electron solutions, so that the electronic ground state is an excited state
in its spectrum. Therefore the minimalization of the corresponding non-relativistic method
must be replaced by a minimax principle. Convergence is straightforwardly obtained by
vector selection, but may be more rigorously procured by second order methods.

The one-particle basis generated by the Dirac-Fock method may be employed in cor-
related methods to obtain more accurate results. Implementations of the second order
Møller-Plesset(MP2) [29, 30], the multi-reference Configuration Interaction (CI) [22, 31]
and coupled-cluster singles and doubles (CCSD) [32] methods have been reported. Also,
work is in progress on the development of a 4-component molecular Multi-Configurational
Self-Consistent Field (MCSCF) code[33], as presented in this thesis. Relativity has further-
more been approached by means of density functional theory [34]. Since relativistic effects
are predominantly found in systems containing heavy elements with a large number of elec-
trons in the valence region, the effects of dynamic correlation may be pronounced. Static
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correlation reflects the need for a multiconfigurational wave function in near-degeneracy
situations, such as bond-breaking. In relativistic systems such a situation becomes partic-
ularly critical due to the additional near degeneracies provided by the spin-orbit coupling
[16]. In fact, the breaking of spin symmetry by the spin-orbit coupling generally makes a
multiconfigurational approach mandatory for systems with more than one open shell [33].

The motivation for the development of molecular 4-component methods is manifold.
The study of relativistic effects has already been mentioned. The prime motivation, how-
ever, is to obtain computational tools that allow an adequate description of chemical sys-
tems in which such effects are important. In addition, 4-component calculations serve as
benchmarks for the quasirelativistic methods and probe their range of validity. In addition,
the 4-component methods are particularly well suited for studies of electric and magnetic
properties of molecules, due to the simple structure of operators. As an example one may
consider nuclear spin-spin coupling, where four operators in the non-relativistic formalism
(Fermi contact, spin-dipole, paramagnetic spin-orbit and diamagnetic spin-orbit) are re-
placed by one operator in the 4-component formalism [35]. At present, the computational
intensity of the 4-component methods to some extent limits feasible applications. On the
other hand, this has lead to intensive work on the computational methods, work which in
the end may benefit non-relativistic methods as well.

0.2 Layout of the thesis

The thesis presented here focuses on the methodological aspects of relativistic molecular
calculations. In particular, it presents the formalism for

• the quaternion Dirac-Fock equations

• the direct 4-component Dirac-Fock method

• the multi-configurational self-consistent field (MCSCF) method

Applications are represented by

• 4-component configuration interaction (CI) studies of the five lower states of PtH

• 4-component direct SCF studies of bonding in hydrides of iodine, astatine and eka-
astatine (element 117)

• 4-component direct SCF studies of bonding in dihydrides of tellurium, polonium and
eka-polonium (element 116)

Methodological development depends on a clear understanding of both the mathematical
structure and the physical content of the theory to be implemented. This has been a
decisive factor in the layout of this thesis.
The thesis consists of three parts.
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1. In the first part I give an extensive, but not comprehensive, introduction to the
field of relativistic quantum mechanics. I have tried to bring out the mathemati-
cal structure and physical implications of the Dirac equation and its approximative
many-electron extension, the Dirac-Coulomb Hamiltonian. The presentation is in-
terspersed with some of my own research material, where I have felt that it elucidates
the presentation. I have also tried to avoid excessive overlap with the papers of the
second part, which means that the two parts should be read as a whole.

2. In the second part five papers are presented.

3. I have furthermore included several appendices:

• documentation of the 4-component direct SCF program DIRAC

• details on the reduction of the Breit term to two-component form

• background material on symmetry in relativistic systems

• diagonalization of quaternion Hermitian matrices

• tabulation and visualization of the angular part of atomic 2-spinors

Notation: I use atomic units throughout, but write electron mass m and the speed of light
c out explicitly.
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Relativistic Quantum Mechanics





Chapter 1

One-electron systems

There was a young lady named Bright
Whose speed was far faster than light
She set off one day
In a relative way
And returned home the previous night

A. H. R. BULLER[36]

The main objective of this chapter is to obtain a Lorentz invariant description of an electron
in a molecular field, that is the field of nuclei. We outline central features of the theory
of special relativity and consider the transition from classical to quantum mechanics. We
present the Dirac equation and discuss its mathematical structure and physical content.
The two quantities are inextricably connected:

1. The transition from classical to quantum mechanics usually proceeds by way of
analogy. Spin has no classical analogue, but appears explicitly in the Dirac equa-
tion. The spin is coupled to the spatial degrees of freedom, and this has profound
consequences for the symmetry properties of solutions to the Dirac equation. The
solutions are fermion functions and change sign under a rotation 2π. This feature is
usually accounted for by the introduction of double groups. The behaviour of inver-
sion in double group theory is deduced on the basis of classical analogies. We shall
demonstrate that by deriving an explicit representation of inversion in spin space,
we arrive at a contradictory result.

2. The coupling of spin and spatial degrees of freedom means that the spin symmetry
of non-relativistic theory is lost. In the absence of external magnetic fields, however,
the spin symmetry can to some extent be replaced by time reversal symmetry. We
demonstrate that time reversal symmetry yields a quaternion formulation of the
Dirac equation.
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3. The charge conjugation symmetry of the free particle Dirac equation reveals its
many-body aspect in that it describes both the electron and its antiparticle, the
positron. A proper decription of an electron in an external field can only be obtained
within the framework of quantum electrodynamics (QED).

Further information of the physical contents of the Dirac equation is obtained by
considering perturbation expansions in terms of the fine structure constant α. This is
also the way to quasirelativistic one- and two-component Hamiltonians. We discuss the
difficulties involved in their derivation, namely the risk of introducing unbounded and/or
highly singular operators.
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1.1 Special relativity

You are rowing a boat upstream. The river flows at three miles per hour;
your speed against the currents is four and one-quarter. You lose your
hat on the water. Forty-five minutes later you realize it is missing and
execute the instantaneous, acceleration-free about-face that such puzzles
depend on. How long does it take to row back to your flowing hat?1

JAMES GLEICK (1992) [37]

The theory of special relativity is ”special” because it only considers the transformation of
space- and time coordinates between inertial frames, that is coordinate systems in uniform
relative motion. The principle of relativity, however, predates the theory set forward in
1905 [38] by Albert Einstein, technical expert third class at the patent office in Bern, and
states that [39]

The laws of physics take the same form in all inertial frames.

Implicit in this postulate is the assumption of homogeneity of space and time and isotropy
of space. Considerations of the structure of time and space form a powerful tool for the
elucidation of the laws of physics and their mathematical formulation , as is demonstrated
in section 1.2 and 1.4. The principle of relativity was originally connected to the notion
of absolute time as embodied in the Galilean transformation

r′ = r− vt

t′ = t
(1.1)

relating coordinates of inertial frames K′ and K, having the same orientation of axes, and
where K′ moves with uniform velocity v relative to K. In the theory of special relativity
the idea of absolute time is replaced by the postulate [39]:

In any given inertial frame, the velocity of light c is the same whether the light
be emitted by a body at rest or by a body in uniform motion.

This postulate leads directly to the Lorentz transformation, as follows: The speed of light,
as measured in inertial frames K and K′, shall have the same value

|r′2 − r′1|
t′2 − t′1

= c;
|r2 − r1|
t2 − t1

= c (1.2)

1”A simpler problem than most. Given a few minutes, the algebra is routine. But a student whose
head starts filling with 3s and 4 1

4
s, adding them or subtracting them, has already lost. This is a problem

about reference frames. The river’s motion is irrelevant — as irrelevant as the earth’s motion through the
solar system or the solar system’s motion through the galaxy. In fact all the velocities are just so much
foliage. Ignore them, place your point of reference at the floating hat — think of yourself floating like the
hat, the water motionless about you, the banks an irrelevant blur — now watch the boat, and you see at
once [. . . ] that it will return in the same forty-five minutes it spent rowing away.” [37]
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By simple rearrangement we find that the quadratic form

s212 = (r2 − r1)
2 − c2t2 =

(

r′2 − r′1
)2 − c2t′2 (1.3)

is identically zero in both coordinate systems. From the assumption of homogeneity of
time and space and isotropy of space, one can deduce [40] that the interval s12 between
any two sets of space and time coordinates (events) is conserved under the transformation
between inertial frames. To simplify things a bit, we shall let frames K and K ′ coincide
at time t1 = t′1 = 0 so that r′1 = r1 = 0. The interval Eq.(1.3) may then be thought of as
the length of a four-dimensional vector rµ which shall be denoted 4-position

rµ = (r1, r2, r3, r4) = (r, ict) (1.4)

The Lorentz transformation preserves the length of 4-position and is a rotation in 4-
dimensional space-time where the timelike coordinate is given by r4 = ict. 2 To derive the
explicit form of the Lorentz transformation we first consider the transformation between
K′ and K where v is directed along the z-axis of both systems, so that x- and y-coordinates
can be neglected. Since length of 4-position is conserved the coordinates (z ′, ict′) of K′

and (z, ict) of K are related by an orthogonal transformation, which has the general form

[

z′

ict′

]

=

[

cos θ sin θ
− sin θ cos θ

] [

z
ict

]

(1.5)

Alternatively, we can write out the two equations

z′ = z cos θ + ict sin θ (a)

ict′ = −z sin θ + ict cos θ (b)

(1.6)

Since K′ and K coincided at t1 = t′1 = 0 the origin of K′, z′ = 0, has coordinate z = vt at
time t in K. Insertion in Eq.(1.6a) immediately gives

tan θ =
iv

c
⇒ cos θ =

(

1 − v2

c2

)− 1
2

= γ, sin θ =
ivγ

c
(1.7)

from which we obtain the transformation
[

z′

ict′

]

=

[

γ ivγ
c−ivγ

c γ

] [

z
ict

]

(1.8)

2The Lorentz transformation is only a rotation when translations are excluded from the space-time
transformations. With translations included the Lorentz transformation is denoted inhomogeneous and
only the distance between 4-position vectors, as expressed by the interval, is conserved in the transformation
between inertial frames.
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In order to bring the transformation on the same form as Eq.(1.1) we first write

r′ = r + [(γ − 1) z − γvt]
v

v
; t′ = γt− γvz

c2
(1.9)

and then use the relation v · r = vz [41] to obtain

r′ = r + v
[

(γ − 1) r·v
v2 − γt

]

t′ = γ
[

t− v·r
c2

]

(1.10)

Note that in the limit of c→ ∞ (the non-relativistic limit) we recover the Galilean trans-
formation. The Lorentz (and Galilei) transformation was derived with the restriction that
the orientation of spatial axes were identical in K and K′3, which means that the trans-
formation Eq.(1.10) does not describe all possible rotations in space-time. For instance, a
rotation about the time-like axis corresponds to a rotation in ordinary three dimensional
space.

The set of 4 × 4 rotation matrices in space-time forms a continuous group, the (ho-
mogeneous) Lorentz group. Four-dimensional vectors, such as 4-position, whose length is
preserved under Lorentz transformations, are denoted 4-vectors. Another 4-vector that
we shall make use of is the 4-gradient

∂µ =

(

∇,− i

c

∂

∂t

)

(1.11)

The 4-vectors form a convenient and compact formalism for the construction of Lorentz
invariant mechanics in analogy with the Newtonian (Galilean invariant) mechanics. We
shall do so, in a somewhat heuristic manner, where our ultimate goal is to derive an
expression for the energy of an electron in an external field (e.g. the field of nuclei),
which will then be the starting point for the transition to relativistic quantum mechanics.
A basic prerequisite for such a derivation is a Lorentz-invariant time-like quantity. We
define proper time τ by

dτ =
ds

c
= dt



1 −

(

dx2

dt2
+ dy2

dt2
+ dz2

dt2

)

c2





1
2

= dt

[

1 − v2

c2

]

1
2

= γ−1dt (1.12)

The coordinates r may be thought of as the coordinates of a particle moving with velocity
v. In the rest frame of the particle we have v = 0 so that dτ = dt. Proper time is thus
seen to be the time in the rest frame of the particle.

3This particular kind of Lorentz transformations is denoted a boost.
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Differentation of 4-position with respect to proper time gives 4-velocity

vµ =
drµ
dτ

= γ (v, ic) (1.13)

Note that the presence of γ in the space-part of 4-velocity limits all speeds to values equal
to or below the speed of light. This has the important consequence that there can be no
instantaneous interactions. Clearly then, the standard Coulomb potential is not Lorentz-
invariant and must be replaced by a potential that take retardation of the interaction into
account.

We proceed by defining 4-momentum as

pµ = mvµ = (p, iMc) ; p = Mv, M = γm (1.14)

The latter relation indicates that the mass M of a particle increases with the speed 4 The
timelike component of pµ can be associated with energy. To demonstrate this, we first
define 4-force by differentation of 4-momentum with respect to proper time

Fµ =
dpµ

dτ
= γ

(

F, ic
dM

dt

)

(1.15)

Since pµ is a 4-vector its length must be Lorentz invariant. We find

(pµ)2 = M2
(

v2 − c2
)

= −(mc)2 (1.16)

Differentation of Eq.(1.16) with respect to proper time gives the important relation

d (pµ)2

dτ
= 2pµ

dpµ

dτ
= 0 ⇒ Fµpµ = 0 (1.17)

showing that 4-momentum and 4-force are orthogonal 4-vectors. A simple rearrangement
gives

dMc2

dt
= F · u =

F · dr
dt

=
dE

dt
(1.18)

where we have used the classical definition of work and energy in the final step. This
relation shows that the time derivative of the quantity Mc2 is associated with the time
derivative of energy. We perform a bold generalization:

d(Mc2) = dE ⇒ E = Mc2 (1.19)

4Alternative views are expounded in [42, 43].
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The above relation shows that an infinitesimal increase in the kinetic energy of a particle
gives a proportional increase in the mass of the particle, so that mass and energy are
equivalent. We can now write the 4-momentum of a free particle as

pµ =

(

p,
iE

c

)

(1.20)

By insertion into Eq.(1.16) we finally obtain

E2 = m2c4 + c2p2 (1.21)

This is the relativistic expression for the energy of a free particle.
We seek, however, the description of an electron in a molecular field. External electro-

magnetic fields are introduced by means of the substitution [40]

pµ → πµ = pµ − qAµ; Aµ =

(

A,
i

c
φ

)

(1.22)

where we have introduced the 4-potential Aµ and the charge q of the particle. The vector
and scalar potentials A and φ are related to the electric and magnetic fields E and B by

E = −∇φ− ∂A

∂t
; B = ∇×A (1.23)

There exists a many-to-one correspondence between electromagnetic potentials and fields,
in that the electric and magnetic fields are invariant under the gauge transformation

Aµ → Aµ − ∂µf (1.24)

where f is any scalar function of space and time coordinates. For consistency we must
therefore require that the laws of physics are invariant under gauge transformations. This
is ensured by the substiution Eq.(1.22).

The fact that the 4-potential transform as the 4-position has some very important
consequences. Consider a intertial frame K in which there is a scalar potential φ(r), but
no vector potential and thus no magnetic field. By transforming to an inertial frame K ′

moving with uniform velocity v relative to K, we find a nonzero vector potential

A′ = − γ

c2
φ(r)v (1.25)

Note that the vector potential in K′ is expressed in terms of a function of coordinates of
K. By transformation of the coordinates to those of K′ retardation terms appear in the
vector potential. We shall not consider these explicitly. For v � c, the resulting magnetic
field in K′ is approximated by

B′ = −E× v

c2
(1.26)
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This means that a particle moving in an electric field experiences a magnetic field in its
own rest frame. This is the origin of the spin-orbit effect [44].

If we perform the substitution Eq.(1.22) and take the square root on both sides in the
resulting equation, we finally arrive at a Lorentz invariant energy expression for a particle
in an external field

E = ±
√

m2c4 + c2π2 + qφ (1.27)

We see that we have a choice of whether to take the positive or negative root. In classical
mechanics, the positive root is chosen, and the negative energy solutions discarded since
discontinous changes are not allowed. In order to arrive at the non-relativistic limit, we
readjust our energy scale by subtracting the rest mass term mc2 and expand the square
root in (π/mc)2

E′ = E −mc2 = qφ+mc2
[

1 +
π2

2m2c2
− π4

8m4c4
+ . . .

]

−mc2

=
π2

2m
+ qφ+O

(

π4

m3c2

) (1.28)

The first two terms constitute the non-relativistic energy expression for a particle in an
exteral field. We shall see in section 1.8, however, that the expansion of the sqaure root
in Eq.(1.27) in order to obtain approximations to the relativistic energy is beset with
difficulties.
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1.2 Spin

A colleague who met me strolling rather aimlessly in the beautiful streets
of Copenhagen [1922] said to me in a friendly manner,”You look very
unhappy”; whereupon I answered fiercely,”How can one look happy when
he is thinking about the anomalous Zeeman effect?”

WOLFGANG PAULI (1945) [45]

In the previous section we derived the Lorentz invariant energy expression for a parti-
cle in an external field in terms of classical mechanics. We now consider the transition
from classical to quantum mechanics. The transition usually proceeds by way of analogy.
The intrinsic angular momentum of the electron (spin) was, however, introduced with no
classical analogue in the early days of quantum mechanics and therefore deserves special
consideration.

We first briefly recall the formalism of quantum mechanics. In the Hilbert-space for-
malism the states of a system are represented by unit vectors Ψ in an infinite dimensional
function space, the Hilbert space. A scalar product is defined by

〈Ψi | Ψj〉 =

∫

Ψi (τ)
† Ψj (τ) dτ (1.29)

where τ are coordinates and dτ the associated volume element. The state vectors are
normalized to unity

〈Ψ | Ψ〉 = 1 (1.30)

Observables of the system are represented by Hermitian operators in the Hilbert space.
The function space is complete in the sense that any state vector can be expanded in the
eigenvectors Φ of any operator Ω̂ corresponding to some observable:

{

Φi|Ω̂Φi = ωiΦi

}

⇒ Ψ =
∑

i

ciΦi; ci = 〈Φ|Ψ〉 (1.31)

The square of the expansion coefficients ci gives the probability of the corresponding value
ωi of the observable. The expectation value of the observable is

〈

Ω̂
〉

=
〈

Ψ
∣

∣

∣
Ω̂
∣

∣

∣
Ψ
〉

=
∑

i

ωic
2
i (1.32)

Another quantity related to experiment is the transition probability

∣

∣

∣

〈

Ψj

∣

∣

∣
Ω̂
∣

∣

∣
Ψi

〉∣

∣

∣

2
(1.33)
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which gives the probability of transition from the state Ψi to another state Ψj under the
influence of an interaction represented by Ω̂. The normalization of state vectors leaves an
arbitrary unimodular complex phase undetermined. The state vectors are therefore more
properly considered as unit rays in the Hilbert space. The absolute phase of the wave
function can not be observed experimentally since the phases enter neither probabilites
nor expectation values. Relative phases can, however, be observed by interferometry (see
e.g. [46, 47, 48]) 5.

Operators are traditionally derived by correpondence with classical mechanics, e.g. the
free-particle Schrödinger equation is obtained from the corresponding classical expression

E =
p2

2m
⇒ ĤΨ = i

∂Ψ

∂t
; Ĥ = − 1

2m
∇2 (1.34)

by the operator substitution

E = −icp4 → i
∂

∂t
; p → i∇ (1.35)

A quantity with no classical analogue is the electron spin, whose existence was first
postulated in 1925 by Goudsmit and Uhlenbeck [50]. Spin appeared for the first time in a
wave equation,without having been inserted by hand, in the equation Dirac obtained by
linearizing the operator analogue of the relativistic energy expression for a free particle
Eq.(1.21), and was therefore taken to be a relativistic effect. However, as he stated himself,
Dirac was ”just playing with equations” [51] and seeing what they gave. In particular he
tried to explore the relation

(σ · p) (σ · p) = p2 (1.36)

where σ are the Pauli spin matrices [52]

σx =

[

0 1
1 0

]

, σy =

[

0 −i
i 0

]

, σz =

[

1 0
0 −1

]

(1.37)

Eq.(1.36) is derived from the more general relation

(σ ·P) (σ · Q) = P ·Q + iσ · (P×Q) (1.38)

This is an important relation apearing in many different contexts. It has the nice property
that it extracts a spin-independent termf from a spin-dependent operator expression.

5The phase indeterminacy is closely related to the gauge(phase) invariance Eq.(1.24) introduced in the
previous section. A phase can be global or local. In the latter case it is a function of space and time
coordinates. The physical properties of a free particle is invariant to any global phase change in its wave
function. If we require local gauge(phase) invariance, external fields must be introduced [49]
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We may play the same ”game” in the non-relativistic domain. We then immediately
see that spin is hidden in the kinetic energy operator. We may introduce an external field
by the substitution

p → π = p + eA; E → E + eφ (1.39)

Using Eq.(1.38) and the relation

π × π = −i∇ ×A = −iB (1.40)

where φ and A are the scalar and vector potentials respectively, we see that an extra term
appears in the non-relativistic Hamiltonian

Ĥ =
π2

2m
− eφ+

e

2m
(σ · B) (1.41)

The term is identified as the spin-Zeeman term and represents the interaction of spin and
an external magnetic field B, from which the anomalous Zeeman effect arise.

Continuing the ”game”, it is even possible to derive a four-component non-relativistic
equation for spin- 1

2 particles, as done by Lèvy-Leblond [53]

[

E (σ · p)
(σ · p) 2m

] [

φ1

φ2

]

= 0 (1.42)

By elimination of the component φ2 we recover Eq.(1.34). What is particularly interesting
about Eq.(1.42) is that it is not derived from correspondence principles, but from exploring
projective (ray) representations of the non-relativistic analogue of the Lorentz group, the
Galilei group. This demonstrates that spin arises naturally in the study of space-time
symmetries in both the non-relativistic and relativistic domains. A lucid discussion of this
point is given in [54, 55]. We return to the Lévy-Leblond equation in section 1.8.
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1.3 The Dirac equation

N.Bohr: – What are you working on?
P.A.M.Dirac: – I’m trying to get a relativistic theory

of the electron.
N.Bohr: – But Klein has already solved that problem.

Solvay Conference (1927) [56]

Let us now turn to the derivation of the relativistic wave equation for the electron. It will
turn out that it is not possible to construct such an equation for the electron alone. Rather
we obtainan equation that describes both the electron and its antiparticle, the positron.

Straightforward operator substitution Eq.(1.35) in the relativistic free-particle expres-
sion Eq.(1.21) leads to the Klein-Gordon equation

[

1

c2
∂2

∂t2
+ p2

]

φ = − (mc)2 φ (1.43)

The energy operator appears squared in this equation. Hence it has solutions of both
positive and negative energies. Contrary to the classical case, the negative energy solutions
cannot be discarded since our functional space would then become incomplete. There will
always be a finite probability of transitions between states of negative and positive energies.
Another problem is that the negative energy solutions have negative probability densities.
These difficulties led to the rejection of the Klein-Gordon equation6. Instead, Dirac tried
to linearize the energy expression Eq.(1.21) by exploiting Eq.(1.36). ”It took me quite a
while . . . before I suddenly realized that there was no need to stick to quantities σ. . . with
just two rows and colums. Why not go to four rows and columns?” [56]. This lead to the
introduction of the Dirac α and β matrices

α =

[

0 σ

σ 0

]

; β =

[

I2 0
0 −I2

]

; [αq, β]+ = 0, q = x, y, z (1.44)

and the Dirac equation [58, 59].
We shall derive the Dirac equation following an approach introduced by van Waerden

[60]. We expand the scalar wave function Eq.(1.43) using Pauli matrices

−
[

1

c2
∂2

∂t2
+ p2

]

φ =

[

i

c

∂

∂t
− (σ · p)

] [

i

c

∂

∂t
+ (σ · p)

]

φ = (mc)2 φ (1.45)

where φ is a two-component wave function. To obtain a first-order equation we introduce

φ1 =
1

mc

[

i

c

∂

∂t
+ (σ · p)

]

φ; φ2 = φ (1.46)

6The Klein-Gordon equation was revived in 1934 as the relativistic wave equation for spinless charged
particles [57].
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The second-order equation then becomes equivalent to two first-order equations

[

i

c

∂

∂t
− (σ · p)

]

φ1 = mcφ2 (a)
[

i

c

∂

∂t
+ (σ · p)

]

φ2 = mcφ1 (b)

(1.47)

To relate this to the Dirac equation for the free electron we take sums and differences

i

c

∂

∂t
[φ1 + φ2] − (σ · p) [φ1 − φ2] = mc [φ1 + φ2] (a+ b)

(σ · p) [φ1 + φ2] −
i

c

∂

∂t
[φ1 + φ2] = mc [φ1 − φ2] (b− a)

(1.48)

and introduce the notation

ψL = φ1 + φ2; ψS = φ1 − φ2 (1.49)

We then obtain









i

c

∂

∂t
− (σ · p)

(σ · p) − i

c

∂

∂t













ψL

ψS



 = mc





ψL

ψS



 (1.50)

The 4-component can be completely in terms of 4-vectors and scalar quantities as

(iγµ∂µ −mc)ψ = 0; γµ = (βα, iβ) , ψ =

[

ψL

ψS

]

(1.51)

and is therefore manifestly Lorentz invariant Dirac. The Dirac equation in its more familiar
form is straightforwardly obtained by multiplication with βc from the left

[

i
∂

∂t
− c (α · p)

]

ψ = βmc2ψ (1.52)

External fields are introduced by means of the substitutions in Eq.(1.22). The Dirac
equation then attains the form

D̂ψ =

[

ĥD − i
∂

∂t

]

ψ = 0; hD = βmc2 + c (α · π) − eφ (1.53)
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or, in full,

























mc2 − eφ− i ∂
∂t 0 ecAz − icdz ecA− − icd−

0 mc2 − eφ− i ∂
∂t ecA+ − icd+ −ecAz + icdz

ecAz − icdz ecA− − icd− −mc2 − eφ− i ∂
∂t 0

ecA+ − icd+ −ecAz − icdz 0 −mc2 − eφ− i ∂
∂t















































ψLα

ψLβ

ψSα

ψSβ























= 0

(1.54)

where we have introduced the notation

dz =
∂

∂z
; d± =

∂

∂x
± i

∂

∂y
. (1.55)

The relativistic wave equation is seen to have four components. The extra degrees of
freedom results from the introduction of spin and the fact that the equation describes both
the electron and its antiparticle, the positron. The upper two components are dominant in
electronic solutions and are therefore denoted the large (L) components, whereas the two
lower components are denoted the small components. The large and small components
both have a spin-up (α) and a spin-down (β) part. In the next three sections we will
explore the physical content of the Dirac equation from its symmetry properties.
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1.4 Spatial symmetry

One day, while we were walking on the beach, he [Dirac] told me that
he would teach me a saying:’It is easy, if you remember the symmetry.
Watch the symmetry.’ He went on, ’When a man says yes, he means
perhaps; when he says perhaps, he means no; when he says no, he is
no diplomat. When a lady says no, she means perhaps; when she says
perhaps, she means yes; when she says yes, she is no lady’. With a
couple of repetitions, I learned it, and he was pleased.

S.A. KURSUNOGLU (1987) [61]

A symmetry operation Ĝ is defined as an operation that commutes with the Hamiltonian
of the system:

[

Ĝ, Ĥ
]

= 0 (1.56)

Symmetry operations are either unitary or antiunitary, as shown by the following argument
by Wigner [62]: Observables calculated from a given wave function are invariant under
any symmetry operation on the wave function. For the transition probability Eq.(1.33)
we must therefore have

∣

∣

∣

〈

ĜΨi | ĜΨj

〉
∣

∣

∣

2
= |〈Ψi | Ψj〉|2 = 〈Ψi | Ψj〉 〈Ψi | Ψj〉∗ (1.57)

where the interaction operator Ω̂ has been set equal to one for simplicity (to obtain a
totally symmetric operator). The above relation can be realized by

〈

ĜΨi | ĜΨj

〉

= 〈Ψi | Ψj〉 ; ⇒ Ĝ is unitary

〈

ĜΨi | ĜΨj

〉

= 〈Ψj | Ψi〉 ; ⇒ Ĝ is anti-unitary

(1.58)

Let us first consider unitary symmetry operations and defer the discussion of antiunitary
operators until the next section. A more thorough discussion will be found in Appendix C.
Here we will exploit a simple, but powerful observation: In the absence of any external field
the Dirac Hamiltonian Eq.(1.53) must be invariant under all possible symmetry operations
(unitary or antiunitary) of time and space. This follows from the homogeneity of space
and time and from the isotropy of space. The latter implies rotational invariance and
the conservation of total angular momentum. The Dirac Hamiltonian does not, however,
commute with the orbital angular mometum operator l, which means that some angular
momentum is ”missing”. By inspection, we find that the Dirac Hamiltonian commutes
with a total angular momentum j = l + s, which demonstrates that the Dirac equation
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describes particles of spin s = 1
2 . The spin-operator s is represented by 1

2ρα where ρα is
the 4 × 4 analogues of the Pauli spin matrices

ρα = (I2 ⊗ σ) =

[

σ 0
0 σ

]

; ρ =

[

0 I2
I2 0

]

;
[ρ, β]+ = 0

[ρ,α] = 0

(1.59)

The total angular momentum operator j is the generator of infinitesimal rotations. A
finite rotation φ about an axis represented by the unit vector n is given by

R (φ,n) = e−iφ(n·j) = e−iφ(n·l)e−iφ(n·s) = Rr (φ,n)Rσ (φ,n) [l, s] = 0 (1.60)

Note from the above relation that the rotation operator splits into one part acting on
spatial coordinates and one part acting on spin coordinates. The rotation operator for the
spin part is straightforwardly established as (see Appendix C)

Rσ (φ,n) = cos
1

2
φ− i (ρα · n) sin

1

2
φ (1.61)

In particular binary rotations about main axes are given by

Cx
2 = −iραx; Cy

2 = −iραy; Cz
2 = −iραz (1.62)

We note that Cq
2C

q
2 = −I4 for all coordinates q which demonstrates that fermion functions

change sign upon a rotation 2π, in contrast to boson functions for which a rotation 2π is
equivalent to the identity operation. The fermion phase shift has been verified experimen-
tally in neutron [63, 64, 65] and NMR [66] interferometry.

Representations in spin space of other symmetry operations can be derived using the
fact that the operator (α · p) must be invariant under all symmetry operations. Hence the
Dirac α-matrices must transform as the momentum operator p, that is, as the Cartesian
coordinates, so that we have

ĜσαĜ−1
σ = ĜrpĜ

−1
r (1.63)

where Ĝr and Ĝσ act on spatial and spin coordinates, respectively. Rotations in spin
space and ordinary space are connected through Eq.(1.63), which establishes a mapping
between the group of SU(2) of special unitary matrices (acting on 2-spinors) and the
group SO(3) of special orthogonal matrices (acting on Cartesian coordinates). However,
the mapping is a two-to-one homomorphism since a rotation 2π is equivalent to the identity
operation in ordinary space, whereas it leads to a phase shift in spin space. Note that the
above relations leave a complex phase undetermined for Ĝσ, in accordance with the phase
indeterminacy of the wave function.
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Under space inversion the momentum operator changes sign, so that the spin part of
the space inversion operator is determined by

îσαî−1
σ = −α (1.64)

The above relation implies that the inversion operator îσ anticommutes with the Dirac
α-matrices. An obvious choice for the inversion operator is therefore the Dirac β-matrix.
We define

îσ = −iβ (1.65)

The fact that the Dirac β-matrix appears in the spin part of the inversion operator demon-
strates that the large ψL and small ψS components have opposite parity7 Finally we derive
expressions for the operations of reflection in the spin coordinates using the fact that re-
flections are the product of inversion and binary rotations :

σ̂yz = −βραx; σ̂zx = −βραy; σ̂xy = −βραz (1.66)

We arrive at the same forms (within a phase factor) using Eq.(1.63), for example

σ̂yz (αx, αy, αz) σ̂
−1
yz = (−αx, αy, αz) ⇒ σ̂yz = −βραx (1.67)

Two-component analogues of the symmetry operations derived so far are obtained by the
substitutions

ρα → σ; → β → I2 (1.68)

A problematic aspect of the representations derived so far is that they are at odds
with the conventions of double group theory. Double groups were introduced as an artifice
by Bethe [69] to avoid two-valued representations of fermion functions, which are not
true representations of the symmetry group, and thereby recover the whole machinery of
group theory. He introduced an extra element E, corresponding to a rotation 2π about
an arbitrary axis. This leads to a doubling of the number of symmetry operations of the
group, but generally not to a doubling of the number of irreducible representations (irreps).
The extra irreps that appear in the double groups are spanned by fermion functions and
are consequently denoted fermion irreps, whereas the irreps of the corresponding single
groups are boson irreps.

7Note from Eq.(1.49) that the functions φ1 and φ2 are not eigenfunctions of parity. Rather, the parity
operator takes φ1 into φ2 and vice versa. The Eqs.(1.47) decouple for rest mass m = 0. Eq.(1.47b) was
therefore proposed as the wave equation for a massless spin- 1

2
particle in 1929 by Weyl [67], but was

rejected since the wave function φ1 is not invariant under parity. Parity is, however, not conserved in weak
interactions. With the demonstration in 1957 of the violation of parity conservation in the β-decay of the
60Co - nucleus [68], the Weyl equation was revived as a two-component equation for the neutrino.
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The introduction of E doubles the order of all rotations. On the other hand, the
order of inversion is still taken to be two (î2 = E), since space inversion commutes with all
rotations in ordinary space. In our representation, Eq.(1.65), however, inversion is of order
four. Since there is an inherent phase indeterminacy, we could correct this by changing
the phase of our inversion operator. However, we can show that operation of inversion
must be of order four if we want consistency in the representation of spatial symmetry
operations.

It is well known that two spins s = 1
2 couple to a singlet function and the three

components of a triplet function. The latter three functions transform as the spherical
harmonics Ylm with l = 1. By forming the direct product of a 2×2 matrix representation of
a symmetry operation (in the two-component case) with itself, we obtain a link to matrix
representations of the spherical harmonics with l = 1. The direct product gives a 4 × 4
matrix from which we by a unitary transformation can isolate a 3 × 3 block representing
the corresponding symmetry operation in the basis of spherical harmonics for l = 1. The
phases for the symmetry operations presented above have been chosen with care so as
to obtain agreement with the Condon-Shortley phase convention for spherical harmonics
[70]. In the case of inversion, the case is, however, unambiguous: The direct product of
the two-component representation of inversion with itself gives

−iI2 ⊗−iI2 = −I4 (1.69)

The identity matrix is invariant under all unitary transformations, and so we obtain −I3

as the representation of inversion in the basis of {Y1,1,, Y1,0, Y1,−1}, as we should. It is
not possible to obtain the same representation starting from a two-component inversion
operator of order only two. Altmann [71], in the language of projective representations,
sees this discrepancy between representations merely as a choice of gauge (phase). In my
opinion his explanation seems somewhat ad hoc. There is a fundamental weakness in the
derivation of the behaviour of inversion in double group theory. The extra element E is
introduced to account for the fact that fermion functions have a behaviour under rotation
that is different from rotations in ordinary space. Yet the behaviour of inversion in double
group theory is deduced with explicit reference to inversion in ordinary space, which is
somewhat inconsistent. It would be interesting to see whether the behaviour of fermion
functions under the operations of inversion or reflections can be resolved experimentally.
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1.5 Time reversal symmetry and quaternion algebra

The invention of the calculus of quaternions is a step towards the knowl-
edge of quantities related to space which can only be compared for its
importance, with the invention of triple coordinates by Descartes. The
ideas of this calculus, as distinguished from its operations and symbols,
are fitted to be of the greatest use in all parts of science.

J.C.MAXWELL (1869)

Quaternions came from Hamilton after his really good work had been
done; and, though beautiful ingenious, have been an unmixed evil to
those who have touched them in any way, including Clerk Maxwell.

LORD KELVIN (1892) [72]

We now turn our attention to antiunitary operators. From the previous section we recall
that an antiunitary operator K̂ is defined by

〈

K̂φ1 | K̂φ2

〉

= 〈φ2 | φ1〉 = 〈φ1 | φ2〉∗ = K̂ 〈φ1 | φ2〉 (1.70)

The last two terms indicate the antilinearity of antiunitary operators:

K̂ (aφ1 + bφ2) = a∗K̂φ1 + b∗K̂φ2 (1.71)

It is straightforwardly shown that the product of two antiunitary operators is a unitary
operator, which implies that any antiunitary operator can be written as a product of
a unitary operator and some antiunitary operator. The simplest choice of an operator
to fullfill conditions Eq.(1.70) and Eq.(1.71) is the complex conjugation operator K̂0. A
general antiunitary operator may therefore be written as

K̂ = UK̂0 (1.72)

In non-relativistic systems K̂0 commutes with the Hamiltonian in the absence of external
magnetic fields and represents the operation of time reversal [73]. This is straightforwardly
seen by letting K̂0 operate on both sides of the time-dependent Schrödinger equation

K̂0

[

i
∂

∂t
Ψ(r, t)

]

= K̂0 [HΨ(r, t)]

⇓
−i ∂
∂t

K̂0Ψ(r, t) = i
∂

∂(−t) K̂0Ψ(r, t) = HK̂0Ψ(r, t)
[

H, K̂0

]

= 0

⇓
i
∂

∂t

(

K̂0Ψ(r,−t)
)

= H
(

K̂0Ψ(r,−t)
)

(1.73)
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We consider next the form of the time reversal operator K̂ in the 4-component formalism.
Momenta are reversed under the operation of time reversal

K̂pK̂−1 = −p (1.74)

Using the general form Eq.(1.72) of an antiunitary operator and Eq.(1.63) we therefore
find that

K̂αK̂−1 = Uα
∗U−1 = −α ⇒ U (−αx, αy,−αz)U

−1 = (αx, αy, αz) (1.75)

Since the Dirac α matrices transform as the coordinates, we identify U as a rotation about
the y-axis Eq.(1.62) and write the time reversal operator as

K̂ = −iραyK̂0 = −i (I2 ⊗ σy) K̂0 (1.76)

Since we are mainly interested in fermion functions, we can alternatively define the time
reversal operator by its action on a fermion function φ, that is

K̂aφ = a∗K̂φ; K̂2φ = −φ (1.77)

We shall use the convention

K̂φ = φ (1.78)

and denote φ and φ as Kramers partners. We shall now use the alternative definition
Eq.(1.77) to derive the general matrix structure of Hermitian operators Ω̂± that are
symmetric(+) or antisymmetric(−) under time reversal [33, 74]

K̂Ω̂tK̂−1 = tΩ̂t; t = ±1 (1.79)

We consider the matrix representation of Ω̂t in a Kramers restricted basis which we define
as follows: Operate with K̂ on a set of fermion basis functions {φp} to generate a com-
plementary basis

{

φp

}

. The Kramers restricted basis is then union of the two sets. We

establish the following relations between matrix elements of Ω̂t

Ωpq = ˆcalKΩ∗
pq =

〈

K̂φq

∣

∣

∣
K̂ΩK̂−1

∣

∣

∣
K̂φp

〉

= tΩ∗
pq

Ωpq = ˆcalKΩ∗
pq =

〈

K̂φp

∣

∣

∣
K̂ΩK̂−1

∣

∣

∣
K̂φq

〉

= −tΩ∗
pq

(1.80)

From these relations we find that the matrix representation of Ω̂± has the structure

Ωt =

[

A B

−tB∗ tA∗

]

;
A† = A; Apq = Ωpq

BT = −B; Bpq = Ωpq
(1.81)
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Let us investigate the properties of the above matrix structure. Since Ω± is Hermitian,
its matrix may be diagonalized by a unitary transformation, giving real eigenvalues ε :

[

A B

−tB∗ tA∗

] [

cα

cβ

]

= ε

[

cα

cβ

]

(1.82)

We write out the corresponding matrix equations

Acα + Bcβ = εcα

−tB∗cα + tA∗cβ = εcβ ,
(1.83)

conjugate both equations and then multiply the first with t and the second with −t. This
gives

tA∗cα∗ + tB∗cβ∗
= tεcα∗

Bcα∗ − Acβ∗
= −tεcβ∗ (1.84)

which can be expressed on matrix form as

[

A B

−tB∗ tA∗

] [

−cβ∗

cα∗

]

= tε

[

−cβ∗

cα∗

]

(1.85)

Hence we can conclude the following about the matrix of Ω̂ in a Kramers restricted basis

• If Ω̂ is symmetric with respect to time reversal, its matrix is doubly degenerate with
eigenvectors related by time reversal symmetry

{[

cα

cβ∗

]

,

[

−cβ

cα∗

]}

(1.86)

To some extent time reversal symmetry recovers the spin symmetry lost in the rel-
ativistic domain, but the recovery is only partial. In the non-relativistic domain a
totally symmetric (spinfree) operator does not couple two spin orbitals if they have
opposite spin. In the relativistic domain we have the weaker relation

〈

φi

∣

∣

∣
Ω̂+

∣

∣

∣
φj

〉

≡ 0 only if i = j (1.87)

• If Ω̂ is antisymmetric with respect to time reversal, then eigenvectors are pairwise re-
lated by time reversal symmetry Eq.(1.86) that have eigenvalues of the same absolute
value, but with opposite signs.
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Let us now investigate time reversal symmetry in the Dirac equation. It turns out that
this is best done by a reordering of the 4-spinors:

[

ψL

ψS

]

=























ψLα

ψLβ

ψSα

ψSβ























→























ψLα

ψSα

ψLβ

ψSβ























=

[

ψα

ψβ

]

(1.88)

From the matrix structures derived above we can immediately split the Dirac equation
Eq.(1.53) into one part that is symmetric and another part that is antisymmetric under
the operation of time reversal

D̂ψ =
[

D̂+ + D̂−
]

ψ = 0 (1.89)

The symmetric part is

D̂+ =























mc2 − eφ −icdz 0 −icd−

−icdz −mc2 − eφ −icd− 0

0 −icd+ mc2 − eφ icdz

−icd+ 0 −icdz −mc2 − eφ























(1.90)

and the antisymmetric part is

D̂− =

























−i ∂
∂t ecAz 0 ecA−

ecAz −i ∂
∂t ecA− 0

0 ecA+ −i ∂
∂t −ecAz

ecA+ 0 −ecAz −i ∂
∂t

























(1.91)

We can now explicitly show that the pair of eigenvectors in Eq.(1.86) are related by
time reversal symmetry. With reordered spinors (Eq.1.88) the time reversal operator has
the form

K̂ = −i [σy ⊗ I2] K̂0 (1.92)



1.5 Time reversal symmetry and quaternion algebra 29

Operating with K̂ on an eigenvector c we obtain

K̂c =

[

0 −I2
I2 0

]

K̂0

[

cα

cβ

]

=

[

−cβ∗

cα∗

]

= c (1.93)

as required.
By restricting the Dirac operator to the time symmetric part D̂+ only, a considerable

simplification is possible by the introduction of quaternion algebra. A (real) quaternion
number8 is written as

q =

3
∑

Λ=0

cΛeΛ = c0 + c1̌ı + c2̌ + c3ǩ; cΛ ∈ R̀ (1.94)

in which the quaternion units ı̌, ̌, and ǩ obey the following multiplication rules

ı̌2 = ̌2 = ǩ
2

= ı̌̌ǩ = −1 (1.95)

The quaternion units are equivalent in the sense that they may be interchanged by cyclic
permutation ı̌ → ̌ → ǩ → ı̌. Thus, in a complex number a + ib the imaginary i may
correspond to either ı̌, ̌, or ǩ without changing its algebraic properties.

When Pauli introduced the spin matrices that bear his name, Jordan pointed out[76]
that the properties of imaginary i times the Pauli matrices were identical to that of the
quaternion units ı̌,̌ and ǩ. Specifically we have the mapping

iσz ↔ ı̌; iσy ↔ ̌; iσx ↔ ǩ (1.96)

which allow us to represent a quaternion number by a 2 × 2 complex matrix

q = a+ b̌ ↔ Q = c0I2+c1iσz +c2iσy +c3iσx =

[

a b
−b∗ a∗

]

;
a = c0 + ic1;
b = c2 + ic3;

(1.97)

so that

q1q2 ↔ Q1Q2 (1.98)

This is analogous to the complex numbers, which may be represented by 2×2 real matrices.
Two equivalent representations exist

c = a+ ib↔























C =

[

a b
−b a

]

C ′ =

[

a −b
b a

]

a, b,∈ R̀ (1.99)

8Note that quaternion numbers are not quaternionic, just as complex numbers are not complexionic.
The use of quaternion algebra in physics is described in [45, 75].
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The quaternion analogue of C’ would be

Q′ =

[

a −b∗
b a∗

]

(1.100)

However we find that Q′
1Q

′
2 6↔ q1q2. Instead we have Q′

1Q
′
2 ↔ q2q1. This demonstrates

a troublesome feature of quaternion numbers, namely that they do not commute under
multiplication9.

Quaternion algebra allows block diagonalization of the matrix of an operator that is
symmetric under time reversal. By comparing Eq.(1.81) and Eq.(1.97) we see that the
matrix Ω+ has a structure identical to that of the 2× 2 complex matrix representation Q
of quaternion numbers, which means that it can be expressed in terms of Pauli matrices
or quaternion units. Block diagonalization is achieved through the unitary quaternion
transformation

U†Ω+U =

[

A + B̌ 0

0 −ǩ (A + B̌) ǩ

]

; U =
1√
2

[

I ̌I
̌I I

]

(1.101)

Due to the decoupling of blocks, the transformation leads to an exact reduction of the
time reversal symmetric Dirac operator D̂+ Eq.(1.90) to two-component form, albeit in
terms of quaternion algebra (indicated by upper prescript Q):

QĥQψ = E Qψ (1.102)

where

Qĥ =

{[

mc2 − eφ 0
0 −mc2 − φ

]

− čı

[

0 dz

dz 0

]

− č

[

0 dy

dy 0

]

− cǩ

[

0 dx

dx 0

]}

(1.103)

The quaternion eigenfunctions Qψ are related to the corresponding complex reordered
4-spinors Eq.(1.90) by

Qψ =
[

ψα∗ − ψβ∗
̌
]

↔
[

ψα

ψβ

]

(1.104)

The quaternion Dirac operator has an intriguing structure. The scalar potential enter the
real part, whereas the kinetic energy part is spanned by the quaternion units ı̌,̌ and ǩ.
The equivalence of quaternion units thus parallels the equivalence of the coordinate axes

9A historical note: In the early days of quantum mechanics Dirac introduced the concept of c-numbers
and q-numbers where ”c stands for classical or maybe commuting” and ”q stands for quantum or maybe
queer”[56]. Maybe they should stand for complex and quaternion?
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(x,y,z). Note that in the quaternion formulation the time reversal operator is mapped into
−̌, for we have

−̌ Qψ =
[

−ψβ − ψα̌
]

↔
[

−ψβ∗

ψα∗

]

= K̂
[

ψα

ψβ

]

(1.105)

Before concluding this section, two final remarks should be made:

1. The full Dirac equation Eq.(1.54) may be expressed in terms of complex quater-
nions. Complex quaternions[77, 78] are obtained by replacing the real coefficients
in Eq.(1.94) by complex coefficients. The substitutions A = iA′ and B = iB′ in
Eq.(1.81) establishes the relation Ω− = iΩ′

+. In the complex quaternion Dirac

equation the time symmetric D̂+ and antisymmetric D̂− parts enter the real and
imaginary parts of the coefficients, respectively. We shall not pursue this approach
here and refer to the literature[79, 80, 81, 82, 83] for details.

2. For a unimodular number the matrix C Eq.(1.99) is identical to a 2 × 2 orthogonal
matrix (see Eq.(1.5)), which represents a two-dimensional rotation. The quaternion
units ı̌, ̌ and ǩ form the basis for general rotations in three-dimensional space, a
feature that is seen from Eq.(1.62). In fact the eight basic binary spatial symmetry
operations can be mapped into the complex quaternion units as shown in Tab.1.5.
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Table 1.1: Mapping between the basic eight binary symmetry operations and the complex
quaternion units

Proper rotations Improper rotations

Ê → I2 → 1 î → −iI2 → −i

Ĉz
2 → −iσz → −ı̌ σ̂xy → −σz → ǐı

Ĉy
2 → −iσy → −̌ σ̂zx → −σy → ǐ

Ĉx
2 → −iσx → −ǩ σ̂yz → −σx → iǩ



1.6 Charge conjugation 33

1.6 Charge conjugation

Sehr viel unglücklicher bin ich über die Frage nach der relativistischen
Formulierung und über die Inkonsequenz der Dirac-Theori . . .Also ich
find’ die gegenwärtige Lage ganz absurd und hab’ mich deshalb, quasi
aus Verzweiflung, auf ein anderes gebiet, das des Ferromagnetismus
begeben.

W. HEISENBERG (1928) [61]

In the previous sections we explored various symmetries of the Dirac equation. In
general a symmetry operator, that is an operator which commutes with the Hamiltonian,
introduces a degeneracy, where the degenerate solutions are related by the symmetry
operation. On the other hand, an ”antisymmetric” operator, that is an operator which
anticommute with the Hamiltonian, leads to solutions related by the operator and that
have energies of the same absolute value, but opposite signs. Such an operator is obviously
at play in the free-particle Dirac equation. It has positive and negative energy branches
separated by an energy gap of 2mc2. Positive and negative eigenvalues are pairwise related,
which corresponds to taking the positive or negative root in the corresponding classical
free-particle energy expression Eq.(1.21).

The pairing of eigenvalues is, however, lifted with the introduction of an external field.
Consider some positive energy solution of the Dirac equation in the presence of an external
field

[

βmc+ (α · (p + eA)) − e

c
φ− p0

]

ψ = 0 (1.106)

Its classical analogue is obtained by taking the positive square root in the corresponding
energy expression Eq.(1.27).

E = +

√

m2c4 + c2 (p + eA)2 − eφ (1.107)

In order to arrive at a negative energy of the same absolute value we have not only to
choose the negative square root, but reverse the sign of the momentum and the external
fields as well. An alternative to sign reversal of the fields is to introduce a positive charge
+e. This means that a positive energy solution of the Dirac equation for a particle of
charge −e is a negative energy solution of the Dirac equation for a particle of charge +e:

[

βmc+ (α · (p − eA)) +
e

c
φ− p0

]

ψ = 0 (1.108)

The two Dirac equations are related by the operation of charge conjugation Ĉ, which
anticommutes with the Dirac Hamiltonian in the limit of no external field. We shall
derive the explicit form of this operator.
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We first note that the sign of the momentum may be reversed by complex conjugation.
If we perform this operation on the Dirac equation for charge –e and then multiply both
sides with a minus sign, we obtain

[

−βmc+ (α∗ · (p − eA)) +
e

c
φ− p0

]

ψ = 0 (1.109)

From this we deduce that the charge conjugation operator is antiunitary and can be
expressed as

Ĉ = UK̂0 (1.110)

where K̂0 is the complex conjugation operator and U is some unitary operator defined by
the relations

Uα∗U−1 = U (αx,−αy, αz)U
−1 = α (a)

UβU−1 = −β (b)

(1.111)

Since the α-matrices transform as the coordinates, we see that the operator U is related
to the operation of reflection in the xz-plane Eq.(1.66). However, all reflections commute
with the β-matrix and to fulfill condition Eq.(1.111b) a slight modfication is required.
With the introduction of an arbitrary phase we arrive at

Ĉ = iβαyK̂0 (1.112)

The effect of the charge conjugation operator on a 4-spinor is

Ĉψ(E) = iβαyK̂0























ψLα

ψLβ

ψSα

ψSβ























= ψC(−E)

























ψSβ∗

−ψSα∗

−ψLβ∗

ψLα∗

























(1.113)

In particular, if ψ is a free-electron solution of energy +E, then ψC is a free-electron
solution of energy −E.

Let us now look into the physics of charge conjugation. In the early days of quan-
tum mechanics, the negative energy solutions was an extremely troublesome aspect of
the Dirac equation. Contrary to classical mechanics, the negative energy solutions can
not be discarded, since there will always be a finite probability for transitions between
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positive and negative energy solutions. However, this makes atoms and molecules highly
unstable, contrary to what is observed experimentally. It can for instance be shown that
the hydrogen atom would decay in less than one nanosecond and the electron would cause
a radiative catastrophe as it falls down the negative energy branch through an infinite
succession of transitions[84]. Dirac provided a solution [85] by stating that all negative
energy states are occupied. Transitions down into the negative energy branch, the ”Dirac
sea”, are then forbidden by the Pauli exclusion principle. On the other hand, transitions
from the negative energy branch into positive energy states may be induced by energies
larger than 2mc2:

Epositive energy electron −Enegative energy electron > 2mc2 (1.114)

However, from charge conjugation symmetry we see that we can reinterpret the negative
energy electronic states as positive energy states of a particle of electron mass, but with
charge +e, which will be termed the positron. It is the antiparticle of the electron, the
”hole” left by the excited electron. Excitations of an electron out of the Dirac sea is then
seen to be the creation of an electron-positron pair:

Eelectron +Epositron > 2mc2 (1.115)

The positron was observed experimentally in 1932 [86]. This model leads to a radical
reinterpretation of the vacuum. The energy-time uncertainity relation allows the cre-
ation of virtual electron-positron pairs at energies below 2mc2 so that the vacuum is now
a ”bubbling soup” of virtual pairs that polarize in the presence of external fields. Its
proper mathematical description is provided by quantum electrodynamics (QED), which
allows particle numbers to vary. In this theory, electrons and positrons appear as quanta
of the quantized Dirac field, and vacuum fluctuations are zero-point oscillations of this
field. Electromagnetic interactions are mediated by the exchange of virtual photons of
the correspondingly quantized electromagnetic field. The interaction of the electron with
zero-point oscillations of the electromagnetic field constitute its self energy. The combined
effect of vacuum polarization and self energy is observed experimentally as the Lamb shift
[87, 88], which in the hydrogen atom leads to a splitting of the 2s1/2 and 2p1/2 - atomic
levels by 0.035cm−1 (about 10% of the spin-orbit splitting of 2p). The Lamb shift is of
order α(Zα)4 where α ≈ (1/137) is the fine-structure constant. The scaling to fourth
order in the nuclear charge Z means that the Lamb shift can become quite large in high-Z
systems. In U 91+ the splitting due to the Lamb shift is thus of the order 6 · 105cm−1, as
has been observed experimentally[89]. In relativistic molecular calculations we will invoke
the no-pair approximation, that is we shall neglect all QED effects, which means that our
theory can only be correct to the order of the Lamb shift.
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1.7 The Dirac equation in a molecular field

. . . John Dalton . . . used square wooden blocks to explain the atomic the-
ory, with the result that a ’dunce, when asked to explain the atomic the-
ory, said: ”Atoms are square blocks of wood invented by Mr Dalton”’

T.TRAVIS & T.BENFEY (1992) [90]

After having explored the symmetries of the general Dirac equation in the previous three
sections, we now construct a Dirac operator pertinent to the problem at hand, namely the
description of molecules. For the moment we will restrict our attention to the one-electron
part of the problem, and defer the discussion of the electron-electron interaction until the
next chapter. Furthermore, we shall for the moment only consider stationary states of
molecular systems. This means that the operator i ∂

∂t is replaced by the stationary energy
E after extraction of a complex phase exp (−iEt). In the spirit of the Born-Oppenheimer
approximation [91] the nuclei will be treated as stationary sources of external fields. This
fixes our frame of reference and thereby ruins Lorentz invariance. It does, however, provide
a workable model for the relativistic description of molecules. Let us therefore consider
the electromagnetic fields generated by static nuclei.

If a nucleus posesses spin I, it generates a vector potential

An(r) = α2gNµN
I× r

r3
(1.116)

where the nuclear g-factor gN is of order unity and α is the fine-structure constant. The
ratio between the nuclear magneton µN and the corresponding Bohr magneton µB for the
electron is inversely proportional to the ratio of masses between the proton and the elec-
tron. Due to this ratio the magnetic fields generated by nuclei are about thousand times
smaller than the fields generated by the electron spin magnetic moment. The magnetic
hyperfine effects generated by nuclear spins may therefore safely be treated as perturba-
tions. Magnetic fields from other external sources in a typical experimental situation are in
general even smaller. We may therefore neglect the vector potential in variational calcula-
tions. This has the advantage that the resulting Dirac operator is time reversal symmetric
and that its solutions are thereby at least doubly degenerate. As seen in section 1.5, this
may be exploited in a quaternion formulation of the Dirac equation.

The scalar potential due to a nucleus N has the general form

φ(ri) =

∫

ρN (r′)
|ri − r′|dr

′ (1.117)

where ρN is the nuclear charge distribution. In non-relativistic theory, nuclei are usually
treated as point charges

ρN (ri) = ZNδ(rN ) (1.118)
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(where δ is the three-dimensional Dirac delta function) giving a Coulombic potential

φ(ri) =
ZN

riN
; riN = ri − rN (1.119)

However, this introduces weak10 singularities in the relativistic wave functions at the
nuclear origins [92], which are hard to model in a finite basis approximation. With the
introduction of a finite nucleus model, which in any case is a better physical model, the
wave functions attain a Gaussian shape at the nuclear origins [93]. This favors the use
of Gaussian basis functions in a finite basis approximation, which is the standard choice
in non-relativistic molecular calculations. The nuclear charge distribution itself is often
represented by a single Gaussian function [94]

ρN (ri) = ZN

(ηN

π

)
3
2
exp

[

−ηNr2
iN

]

(1.120)

since this leads to integrals that are easily evaluated. The exponent ηN is chosen to give

a root-mean-square value 〈r〉
1
2 of the nuclear charge distribution

〈

r2
〉

1
2 =

3

2η
(1.121)

equal to the empirical formula [95, 13]

〈

r2
〉

1
2 =

[

0.836A
1
3 + 0.57

]

· 10−15mbohr (1.122)

where A is the atomic mass number. This gives the formula

η =
3

2

[

0.529167

0.836A
1
3 + 0.57

]2

· 1010 (1.123)

The corresponding potential is then given in terms of the incomplete gamma functions Fn:

φ(ri) = ZN

√

4ηN

π
F0(ηNr2

iN ); Fn(x) =

∫ 1

0
exp

[

−xt2
]

t2ndt (1.124)

The Gaussian charge distribution leads to a long-range behaviour of the potential identical
to that of a Coulombic potential, but a finite value at the nuclear origin

φ(rN ) = 2ZN

√

ηN

π
(1.125)

10The singularities are weak in the sense that the wave function is still square integrable.
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The shape of the nuclear charge distribution is not considered important for chemistry [96],
but the Gaussian model can easily be improved by including more Gaussian functions. For
instance, a nuclear quadrupole moment could be introduced by inclusion of Gaussian d-
functions in order to model electric hyperfine interactions.

Based on the discussion above, we see that we can choose the time reversal symmetric
Dirac operator to describe an electron in a molecular field. The molecular field Dirac
operator can thereby be given a compact form in terms of quaternion algebra.
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1.8 Approximations to the Dirac equation

The number 1/137, the fine structure constant which his teacher Som-
merfeld had introduced into physics, was Pauli’s link to the ’magic-
symbolic’ world with which he was so familiar. Pauli spent the last few
days of his life in the Red Cross Hospital in Zürich, where he died on
15 December 1958. A fact which had disturbed him during these last
days was that the number of his room was 137.

C.P.Enz(1972) [97]

1.8.1 4-component forms

In this section we consider the approach to the non-relativistic limit (n.r.l.) c → ∞ of
the Dirac equation for molecular fields discussed in the previous section. All changes in
the values of observables that result from switching from the Dirac equation to its non-
relativistic counterpart constitute relativistic effects. By a perturbation expansion of the
Dirac equation in parameters related to the fine structure constant α = c−1, it is possible
to obtain approximate Hamiltonians that incorporate relativistic effects to a given order
in the expansion parameter. The purpose of this section is not to provide a comprehensive
overview of such approximate Hamiltonians. Rather we employ perturbation expansion to
identify and investigate the physical content of various relativistic effects. In addition, we
shall discuss the difficulties associated with the derivation of approximate Hamiltonians.

Let us first establish the n.r.l. of the Dirac equation. We shall limit our discussion
to the Dirac equation of an electron in the molecular field of fixed nuclei. To align the
relativistic and non-relativistic energy scales, we subtract the rest mass term mc2 from
the Dirac equation. This amounts to the substitution

β → β′ = β − I4 (1.126)

and leads to the operator

ĥD;V =
[

β′mc2 + c (α · p) + V̂
]

; V̂ = −eφ (1.127)

and the corresponding equation
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Alternatively, it can be expressed as two coupled first-order differential equations

V̂ ψL + c (σ · p)ψS = EψL; (a)

c (σ · p)ψL +
(

V̂ − 2mc2
)

ψS = EψR; (b)
(1.129)

By solving Eq.(1.129b) for ψS , we find that the large ψL and small ψS components are
coupled through the relation

ψS =
1

2mc
B(E) (σ · p)ψL; B(E) =

[

1 +
E − V

2mc2

]−1

(1.130)

The energy-dependent operator B(E) is totally symmetric under the symmetry group de-
fined by the molecular field. It is therefore the operator (σ · p) that relates the symmetries
of the large and small components. The large and small components are thereby seen to
have opposite parities, and we may anticipate that in a finite basis approximation to the
Dirac equation, the large and small components will have to be expanded in separate basis
sets.

Electronic solutions of the Dirac equation Eq.(1.129) have energies E ∼ 0, which means
that the small components are generally of order α smaller than the large components and
vanish in the n.r.l., hence the notation employed for the upper and lower two components.
The roles are reversed for positronic solutions (E ∼ −2mc2). Note, however, that for sin-
gular potentials such as the Coulombic potential the n.r.l. is only reached asymptotically
and even for a finite nucleus Eq.(1.130) indicates that the small components of electronic
solutions are to a large extent localized at the nuclear origins.

It is obvious from the form of Eq.(1.129) that its non-relativistic limit cannot be
obtained directly. However, we may follow the approach of Kutzelnigg [98] and perform a
change of metric by the substitution
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
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ψL

cψS



 (1.131)

In matrix form we obtain the equation
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(σ · p) −2m
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1 − V̂

2mc2
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1 0
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



ψL

φL



 (1.132)

which for electronic solutions goes into the 4-component non-relativistic Lèvy-Leblond
equation Eq.(1.42) in the non-relativistic limit. Note that in this approach the upper and
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lower two components are of the same order in α, which we have indicated by using the
superscript L on both components. The n.r.l. for positronic solutions is obtained by the
analogous substitution





ψL

ψS



→





φS

ψS



 =





cψL

ψS



 (1.133)

The fact that positronic and electronic solutions have separate non-relativistic limits may
be exploited to impose boundary conditions on approximate Hamiltonians, so that they
are restricted to electronic solutions only. The modified Dirac equation Eq.(1.132) forms
the basis for the direct perturbation theory of Kutzelnigg [98, 14].

The n.r.l. of the modified Dirac equation clearly demonstrates that spin is not a rela-
tivistic effect. The non-relativistic spin-free Hamiltonian of an electron in a molecular field
is, however, straightforwardly obtained from the non-relativistic Lèvy-Leblond equation
by elimination of the small components. In the non-relativistic domain, the spatial and
spin degrees of freedom can therefore be treated separately. A separation of spin-free and
spin-dependent terms is possible in the Dirac equation as well, as shown by Dyall [99].
His approach involves a change of metric first suggested by Kutzelnigg [100]
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 where ψS =
(σ · p)

2mc
φL (1.134)

and leads to two coupled second-order differential equations
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(1.135)

involving the kinetic energy operator

T̂ =
p2

2m
(1.136)

The Hamiltonian of this modified Dirac equation can be split into a spin-free h̃sf
D;V and a

spin-dependent h̃sd
D;V part using Eq.(1.38):

(σ · p) V̂ (σ · p) = (σ · p)
(

σ · V̂ p
)

= p · V̂ p − iσ ·
(

p× V̂ p
)

(1.137)
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We obtain

h̃sf
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




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0 0
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

(1.138)

An advantage of this approach is that the functions ψL and φL have the same symmetry
and may therefore be expanded in the same basis in a finite basis approximation.

1.8.2 Reduction to 2-component forms

The majority of approximate methods are based on a reduction of the Dirac equation to
two-component form. This is accomplished either by elimination of the small components
(esc) or by a unitary transformation that seeks to decouple the large and small components,
e.g. the Foldy-Wouthuysen(FW) transformation[101]. It has been shown by Moss that the
two approaches are equivalent for free particles, in which case the FW - transformation is
available in closed form. We may straightforwardly generalize this conclusion to include
external fields [102]. Our exposition and notation follows closely that of van Lenthe et al.
[103].

Elimination of the small components

Consider first the method of elimination of the small components. The Dirac equation
can be cast in the form

ĥDΨ = EΨ ⇒
[

ĥ11 ĥ12

ĥ21 ĥ22

] [

φ1

φ2

]

= E

[

φ1

φ2

]

(1.139)

which may be written as a pair of coupled equations:

ĥ11φ1 + ĥ12φ2 = Eφ1 (a)

ĥ21φ1 + ĥ22φ2 = Eφ2 (b)

(1.140)

We solve Eq.(1.140b) for φ2

φ2 =
(

E − ĥ22

)−1
ĥ21φ1 = χφ1 (1.141)

and insert the result into Eq.(1.140a), so that we obtain

ĥescφ1 =

[

ĥ11 + ĥ12

(

E − ĥ22

)−1
ĥ21

]

φ1 =
[

ĥ11 + ĥ12χ
]

φ1 = Eφ1 (1.142)
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Note that ĥesc is energy-dependent, but the equation may be solved iteratively. This does
not, however, decouple our equations: After solving Eq.(1.142), φ1 and E may be inserted
in Eq.(1.141) to obtain φ2. A decoupling may be accomplished by a renormalization.
This step is furthermore important in order to ensure an effective Hamiltonian that is
Hermitian. Let Ψ be normalized to unity. We seek a normalized function of the form
Φ = Ôφ1 where Ô is a normalization operator:

〈Φ | Φ〉 =
〈

Ôφ1 | Ôφ1

〉

= 〈Ψ | Ψ〉 = 〈φ1 | φ1〉 + 〈φ2 | φ2〉 = 1 (1.143)

Using Eq.(1.141) the final term is recast as

〈φ1 | φ1〉 + 〈φ2 | φ2〉 =
〈

φ1

∣

∣

∣
(1 + χ†χ)

∣

∣

∣
φ1

〉

(1.144)

We may therefore choose Ô as

Ô =
√

1 + χ†χ (1.145)

and the Hamiltonian for Φ becomes

ĥeff = ÔĥescÔ−1 =
√

1 + χ†χ
[

ĥ11 + ĥ12χ
] 1
√

1 + χ†χ
(1.146)

This, then, is the effective two-component Hamiltonian in its final form.

Decoupling by unitary transformation

The above decoupling may be accomplished through a unitary transformation as well.

UĥDU
−1UΦ = EUΦ (1.147)

The unitary operator U may be expressed as[14]

U = Ô−1

[

1 χ†

−χ 1

]

⇒ U−1 = Ô−1

[

1 −χ†

χ 1

]

; Ô =
√

1 + χ†χ (1.148)

Our transformed Hamiltonian becomes

UĥDU
−1 =

[

ĥ′11 0

0 ĥ′22

]

= Ô−1

[

ĥ11 + ĥ12χ+ χ†ĥ21 + χ†ĥ22χ −ĥ11χ− χ†ĥ21χ
† + ĥ21 + χ†ĥ22

−χĥ11 − χĥ21χ+ ĥ21 + ĥ22χ χĥ11χ
† − χĥ12 − ĥ21χ

† + ĥ22

]

Ô−1

(1.149)



44 Ch.1 One-electron systems

From this we see that the conditions for decoupling of the two equations are

−χĥ11 − χĥ12χ+ ĥ21 + ĥ22χ = 0 (a)

−ĥ11χ
† + ĥ12 − χ†ĥ21χ

† + χ†ĥ22 = 0 (b)

(1.150)

The two equations are seen to be simply Hermitian conjugates of each others. By multi-
plying Eq.(1.150) equation with χ† from the left and rearranging we obtain

χ†ĥ21 + χ†ĥ22χ = χ†χĥ11 + χ†χĥ12χ (1.151)

The latter relation may be used to simplify the upper diagonal transformed Hamiltonian

ĥ′11 = 1√
1+χ†χ

[

ĥ11 + ĥ12χ+ χ†ĥ21 + χ†ĥ22χ
]

1√
1+χ†χ

=
√

1 + χ†χ
[

ĥ11 + ĥ12χ
]

1√
1+χ†χ

(1.152)

We see that this is exactly the same expression as Eq.(1.146) if we choose

χ =
(

E − ĥ22

)−1
ĥ21 (1.153)

Thus the two decoupling schemes are equivalent.

1.8.3 2-component forms

The equivalence of the two decoupling schemes means that when one considers approxi-
mations one can choose the scheme that is best suited to the mathematical manipulations
involved. The expression for the effective two-component Hamiltonian Eq.(1.146) is some-
what deceptive in that it gives the impression that the large and small components can
be completely separated.

This is, however, only true for free particles and not in the presence of an external
field. The effective two-component Hamiltonian derived in the previous section has the
form

ĥeff = ÔĥescÔ−1 =
√

1 + χ†χ

[

V̂ +
1

2m
(σ · p)B(E) (σ · p)

]

1
√

1 + χ†χ
(1.154)

where

χ =
1

2mc
B(E) (σ · p) (1.155)
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By a slight rearrangement we obtain

ĥeff = ĥesc −
[

ĥesc, Ô
]

Ô−1 (1.156)

In the case of free particles the normalization operator Ô commutes with ĥesc, so that the
second term in the effective Hamiltonian Eq.(1.156) disappears. The remaining equation
reads

ĥeffΦ = ĥescΦ = c2 (σ · p)
(

E + 2mc2
)−1

(σ · p)Φ =
p2

2m

[

1 +
E

2mc2

]−1

Φ = EΦ (1.157)

We rearrange to

(

E2 + 2mc2E − c2p2
)

Φ = 0 (1.158)

and solve for E, which gives

ĥeff
± Φ =

(

±Êp −mc2
)

Φ± = E±Φ±; Êp =
√

m2c4 + c2p2 (1.159)

The sign refers to free electron (+) or positron (−) solutions. The square root in the
operator represents no problem, since we can solve this equation in momentum space.

With the introduction of external fields the normalization operator Ô does not in gen-
eral commute with ĥesc and the effective two-component Hamiltonian can not be expressed
in an operationally useful form. It has to be approximated by some sort of perturbation
expansion from which the energy dependence can be iterated out. The major difficulty
with such an approach is that it tends to give operators that are ill-behaved. A simple
example is provided by the effective two-component Hamiltonian for free electrons. An
expansion to second order in (p/mc)2 gives

ĥeff
+ = mc2

(

√

1 +
( p

mc

)2
− 1

)

=
p2

2m
− p4

8m3c2
+O

(

α4
)

(1.160)

The first term in the expansion is the standard kinetic energy operator T̂ . By comparison
with Eq.(1.28) we recognize the second term as a first order correction to the kinetic
energy resulting from the increase of the electron mass with the velocity. It is therefore
commonly referred to as the mass-velocity term. There are two difficulties associated with
this expansion:

1. The expansion in (p/mc)2 is valid only for p � mc which in general does not hold
true. In particular, p→ ∞ as r → 0 in the presence of a Coulombic potential.
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2. Even though ĥeff
+ is defined for free electrons only, i.e. for energies E > 0, the

operator resulting from the second order expansion above is unbounded from below
due to the presence of the mass-velocity term. The inclusion of higher order terms
lead to uncontrollable oscillations.

Let us briefly look at three effective Hamiltonians for an electron in an external molecular
field:

1. The Pauli operator.

2. The regular approximation.

3. The Douglas-Kroll operator.

The three effective Hamiltonians can be related to three different expansions of the energy-
dependent operator

B(E) =

[

1 +
E − V

2mc2

]−1

(1.161)

The Pauli-operator

In the first approach B(E) is expanded using the series expansion

(1 + x1)
−1 =

∞
∑

k=0

(−1)k xk
1; x1 =

E − V

2mc2
(1.162)

The Pauli-operator [52] is obtained by an expansion to second order in x1 and has the
form

ĥP = ĥnr + ĥmv + ĥso + ĥDar (1.163)

The first term is simply the non-relativistic Hamiltonian

ĥnr = T̂ + V̂ (1.164)

whereas the second term is the mass-velocity operator

ĥmv = − p4

8m3c2
(1.165)

The third term is the spin-orbit operator [104, 105, 106, 16]

ĥso =
ieσ

4m2c2
· (E× ∇) (1.166)
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where E is the molecular field. Its physical content can be understood by comparison with
Eq.(1.26). When an electron moves in the molecular field it experiences a magnetic field
in its own rest frame, in addition to the electric field. The spin-orbit operator represents
the interaction of the electron spin with this magnetic field, as mediated by the electronic
motion. The operator couples spin and spatial degrees of freedom and therefore makes a
separate treatment of spin and spatial symmetry impossible.

The fourth term is the Darwin term

− e

8m2c2
(∇ · E) (1.167)

and can be understood as a correction to the electric potential of the nuclei felt by the
electron if we assume that the electron (or its charge) performs a rapid isotropic oscillatory
motion δ (Zitterbewegung) [107] about its mean position r. In order to see this, we expand
the potential about the mean position r

φ(r + δ) = φ(r) + (δ · ∇)φ(r) +
1

2
(δ · ∇)2φ(r) + . . . (1.168)

and take the time average11 [40]

〈φ(r + δ)〉 = φ(r) + 1
2

〈

(δ · ∇)2
〉

φ(r) + . . .

= φ(r) + 1
6

〈

δ2
〉

∇2φ(r) + . . .
(1.169)

The Darwin term arises from the second term if we make the identification

〈

δ2
〉

=
3

(2mc)2
(1.170)

The extraordinary dynamics of the Dirac electron is illustrated by the fact that it has
three sets of independent dynamical variables: position r, momentum p, and velocity cα.
The latter operator is found from the Heisenberg equation of motion

dr

dt
= i
[

ĥD, r
]

= cα (1.171)

The extra degrees of freedom accomodates spin, and it has therefore been suggested that
spin arises from the Zitterbewegung, interpreted as internal charge oscillations in the elec-
tron [108, 109, 110, 111].

The Pauli-Hamiltonian is not a very satisfactorily approximation to the Dirac equation
for two reasons:

11The first order time in the Taylor expansion the disappears due to the assumed isotropy of the Zitter-
bewegung.
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1. It contains the mass-velocity operator, which makes it unbounded from below and
therefore not suited for variational calculations.

2. If we make the association E − V̂ = T̂ , we see that the expansion parameter x1 is
approximately (p/mc)2 which goes to infinity as r → 0 in singular potentials and
therefore leads to the introduction of highly singular operators. In particular, the
spin-orbit operator in a Coulombic potential V̂ = −Z/r attains the form 12

ĥso =
Z

4m2c2

(

σ · l
r3

)

, (1.172)

which has an r−3 dependence. The Darwin term becomes a Dirac delta function

ĥDar =
π

2m2c2
δ(r) (1.173)

and thereby only contributes a positive energy shift determined by the electron den-
sity at the nuclear origins, which is not very satisfactorily in a variational calculation.
Higher expansions in x1 Eq.(1.162) leads to higher singularities and undefined prod-
ucts of three-dimensional delta functions. Note that the situation is not alleviated
with the introduction of finite nuclei, for even though the expansion parameter no
longer goes to infinity as r → 0, it will still have very large values near the nuclear
origins. This will be illustrated by a numerical example below.

Further discussion of the Pauli-operator is found in Refs. [113, 114, 4].

The regular approximation

Singularities in the effective two-component Hamiltonian can be avoided by a better choice
of expansion parameter. A regular expansion has been suggested by van Lenthe et al. [103]

B(E) =
2mc2

2mc2 − V
(1 + x2)

−1 ; x2 =
E

2mc2 − V
(1.174)

The extraction of a prefactor from B(E) means that the zero–order Hamiltonian in the
regular approximation (ZORA)

ĥZORA = V̂ + (σ · p)

{

c2

2mc2 − V

}

(σ · p) (1.175)

12Expressions for the spin-orbit and Darwin terms with a Gaussian nuclear charge distribution has been
derived by Dyall and Fægri [112].
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is not identical to the non-relativistic Hamiltonian. Rather, it is identical to the zero–order
effective Hamiltonian derived by Chang et al. [115]. It can be reformulated as

ĥZORA = V̂ + p

{

c2

2mc2 − V

}

p−
{

c2

2mc2 − V

}2

ieσ · (E× ∇) (1.176)

By comparison with Eq.(1.166) this shows that spin-orbit interaction is present already at
the zero–order level.

We may illustrate the difference between the two expansions Eq.(1.162) and Eq.(1.174)
by a numerical example. For an atomic stationary state the B(E) operator may be consid-
ered as an analytic function of the radial variable r [116]. This allows a direct comparison
of expansions. I have chosen the one-electron system Rn85+ as test example. The nuclear
charge distribution has been modelled by a Gaussian function Eq.(1.120) with exponent
η = 1.3·108, corresponding to a root-mean-square value 〈r〉 = 1.1·10−4 bohr of the nuclear
charge distributions. Using the atomic 4-component code GRASP [117], the energy of the
1s1/2 orbital was found to be E1s1/2

= −4154.662042H13 .

Due to the use of a finite nucleus the potential does not go to infinity as r → 0, but it
does reach a large value

V (0) = −Z × 2

√

η

π
= −1.117 · 106 (1.177)

This means that x1 is not a very good expansion parameter near the nuclear origin. This
is clearly displayed in Table 1.2 where I have listed the values of the potential, of B(E) and
the two expansion parameters x1 and x2 at the nuclear origin and at infinity. In Fig.1.1
the expansion parameters are plotted as functions of r. It can be seen that whereas x2

goes more or less to zero at the nuclear origin, x2 goes to a value that is about thirty times
unity. Expansions up to order two are plotted in Figures 1.2, 1.3 and 1.4. It can be seen
that the expansion in x2 is essentially converged already to second order. Limiting values
for the two expansions up to order five are given in Tables 1.3 and 1.4. As a measure of
the general convergence I have calculated the integral 14

τ(x, n) =

∫ ∞

0

|B(r;E) − b(r;E, x, n)|
r

dr (1.178)

where b(r;E, x, n) represents an expansion of B(E) as a function of r in terms of expansion
parameter x up to order n.

The test example clearly demonstrates the superiority of x2 over x1 as expansion
parameter. The regular approximation generates operators that are never more singular

13This may be compared with the value E1s
1/2

= −4158.424082H obtained with a point nucleus
14The integrals were evaluated using the numerical integration routine of GRASP [117].
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than the external potential. However, the mass-velocity operator appears in the first order
Hamiltonian, which means that it is has no lower bound and can not be used in variational
calculations.
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Table 1.2: Limiting values of the potential, expansion parameters and B(E)

r = 0 r → ∞
V̂ −1.117 · 106 0.000

B(E) 3.266 ·10−2 1.124

x1 29.617 −1.106 ·10−1

x2 −3.600 ·10−3 −1.106 ·10−1

Table 1.3: Expansion in x1

Order r = 0 r → ∞ τ

0 1.0000 1.000 2.400 · 101

1 −2.862 · 101 1.111 1.260 · 102

2 8.485 · 102 1.123 3.208 · 103

3 −2.513 · 104 1.124 8.839 · 104

4 7.443 · 105 1.124 2.492 · 106

5 −2.204 · 107 1.124 7.105 · 107

Table 1.4: Expansion in x2

Order r = 0 r → ∞ τ

0 3.254 ·10−2 1.000 1.781 · 101

1 3.266 ·10−2 1.110 1.945
2 3.266 ·10−2 1.123 2.147 ·10−1

3 3.266 ·10−2 1.124 2.370 ·10−2

4 3.266 ·10−2 1.124 2.619 ·10−3

5 3.266 ·10−2 1.124 2.893 ·10−4
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Figure 1.1: The expansion parameters x1 Eq.(1.162) and x2 Eq.(1.174) plotted as a function of r

for the 1s1/2-orbital of Rn
85+.
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Figure 1.2: Comparison of the exact function B(E) and zero–order expansions in x1 Eq.(1.162)

and x2 Eq.(1.174) for the 1s1/2-orbital of Rn
85+.
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Figure 1.3: Deviations of first order expansions in x1 Eq.(1.162) and x2 Eq.(1.174) from the exact

B(E) for the 1s1/2-orbital of Rn
85+.
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Figure 1.4: Deviations of second order expansions in x1 Eq. (1.162)) and x2 Eq. (1.174) from the

exact B(E) for the 1s1/2-orbital of Rn
85+.
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The second order Douglas-Kroll operator

In order to avoid unboundedness of approximate Hamiltonians, we realize that the free-
electron operator Êp Eq.(1.159) must be retained in closed form. Since this operator
involves the square root of the momentum operator, the desired two-component Hamilto-
nian is therefore preferably derived in the momentum representation. The Douglas-Kroll
operator [118] may be thought of as an expansion in

x3 =
E − V

mc2 + Êp

(1.179)

We see that Êp appears explicitly in the expansion parameter and is thereby never ex-
panded. Furthermore, x3 leads to a regular expansion of B(E) since, in the presence of a
Coulombic potential, p→ ∞ as r → 0. The expansion therefore introduces no singularities
more severe than the potential. Note that to first order in α2 x3 reduce to x1, but the
two expansion parameters cannot be compared directly since x3 contains the non-local
operator Êp.

The Douglas-Kroll operator is formally derived by first performing a free-electron
Foldy-Wouthuysen transformation on the Dirac operator and then expanding the resulting
operator in the external potential.The operator has the form

ĥDK = Êp −mc2 + V̂ eff (1.180)

where the effective potential to second order is given by

V̂ eff = Â
[

V̂ + R̂V̂ R̂
]

Â+ Ŵ1

[

Êp +
1

2

(

Ŵ1Êp + ÊpŴ1

)

]

Ŵ1 (1.181)

Kinematical factors are

Â =

√

Êp +mc2

2Êp

(1.182)

introduced by renormalization, and

R̂ =
c (σ · p)

Êp +mc2
(1.183)

which regularizes potentials since [119]

lim
p→∞

R̂ = (σ · n) ; n =
p

|p| (1.184)
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Finally, Ŵ1 is an integral operator with kernel

Ŵ1

(

p,p′) = Â(p)
[

R̂(p) − R̂(p′)
]

Â(p′)

{

V̂ (p,p′)
Ep +Ep′

}

(1.185)

Here V̂ (p,p′) denotes the Fourier transform of the external potential. The Douglas-Kroll
operator is not straightforwardly implemented due to use of the momentum representation.
Applications to chemical systems have been made feasible through the work of Heß et al.
[120, 15, 121].
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Chapter 2

Many-electron systems

. . . there is an alternative formulation of the many-body problem, i.e.
how many bodies are required before we have a problem ? G. E. Brown
points out that this can be answered by a look at history. In eighteenth-
century Newtonian mechanics, the three-body problem was insoluble.
With the birth of general relativity around 1910 and quantum electrody-
namics in 1930, the two- and one-body problems became insoluble. And
within modern quantum field theory, the problem of zero bodies (vac-
uum) is insoluble. So, if we are out after exact solutions, no bodies at
all is already too many !

R. D. MATTUCK[122]

A many-particle system represents no many-particle problem unless there is some sort of
interaction between the particles. For an electron in a molcular field, we have so far avoided
many-body problems by relegating nuclei to the role of stationary sources of external fields.
With the introduction of electron-electron interactions we have a true many-body problem
at hand, and as such it cannot in general be solved analytically1. In the relativistic domain
a further complication is that the Lorentz invariant electron-electron interaction cannot be
expressed in a useful closed form, which means that approximations must be introduced.

In this chapter we will first discuss the nature of the electron-electron interaction in
relativistic systems. We then construct the Hamiltonian that will be used in relativistic
calculations. To avoid overlap of material in the thesis I shall summarize the papers at
this stage. The reader is adviced to go through the papers at this point (section 2.2.3).
Before concluding, I will discuss various features of relativistic molecular calculations.

1An exactly soluble non-relativistic two-electron atomic model is discussed in [123].
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2.1 The electron-electron interaction

A friend of ours, Hulme, was walking many years ago with Paul [Dirac]
in Cambridge, with something rattling in his pocket, and he said apolo-
getically, ’I am sorry about this noise. I have a bottle of aspirin in my
pocket, and I took some as I had a cold, so it is normal for it to make
some noise’. There was a silence for a while and then, so our friend
Hulme told us, Paul said, ’I suppose it makes a maximum noise when
it’s just half full.’

R.Peierls (1972) [61]

In classical electrodynamics the interaction of two electrons is mediated by the electro-
magnetic field. In contrast, quantum electrodynamics (QED) views this interaction as
mediated by the exchange of virtual photons. The link between the two pictures is that
photons appear as quanta of the quantized electromagnetic field. The electrons them-
selves, together with their antiparticles (positrons), are quanta of the quantized Dirac or
electron-positron field. An important consequence of field quantization is that it allows
the number of quanta or particles to change, as for example in the creation or annihi-
lation of electron-positron pairs. Relativistic molecular quantum mechanics in general
operate within the framework of the no-pair approximation, in which pair creation is pro-
hibited. This is equivalent to working with an unquantized Dirac field. Furthermore, the
electron-electron interaction is usually represented solely by the instantaneous Coulomb
interaction, which means that all retardation and direct magnetic effects are ignored. In
this section we discuss the full electron-electron interaction of QED and to what extent
the Coulomb interaction is a good approximation for our purposes. It will be seen that a
change of gauge alters the form of the expression for electron-electron interaction in QED
already at order (Zα)2. In order to understand how this comes about, it is instructive to
explore the link between classical and quantum electrodynamics.

In classical electrodynamics the electric E and magnetic B fields are determined by
Maxwell’s equations

∇ · B = 0 (a)

∇ ×E = −∂B
∂t

(b)

∇ · E = 4πρ (c)

∇ ×B =
1

c2

[

4πj +
∂E

∂t

]

(d)

(2.1)

where ρ is the charge density (charge per unit volume) and j is the current density (flow
of charge per unit time per unit area across a surface). Maxwell’s equations are Lorentz
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invariant and were therefore, prior to the advent of the theory of special relativity, denoted
non-relativistic, since they did not obey the Galilean transformation Eq.(1.1). The electric
and magnetic fields may be represented by a scalar φ and vector A potential

E = −∇φ− ∂A

∂t
; B = ∇×A (2.2)

Whereas the electric and magnetic fields are uniquely determined by the scalar and vector
potentials, the inverse relation does not hold true. As mentioned in section 1.1, the electric
and magnetic fields are invariant under gauge transformations

A → A− ∇f ; φ→ φ+
∂f

∂t
(2.3)

where f is any scalar function of space and time coordinates. Specific choices of gauge are
the Coulomb gauge

∇ ·A = 0 (2.4)

and the Feynman (Lorentz) gauge

δµAµ = 0 (2.5)

The Feynman gauge is expressed solely in terms of 4-vectors and is therefore manifestly
Lorentz invariant.

The origin of the name ”Coulomb gauge” is seen from the following: If we insert the
definitions Eq.(2.2) of the electric and magnetic fields into Eq.(2.1c) and use the Coulomb
gauge condition Eq.(2.4), we obtain

∇ ·E = −∇2φ− ∂(∇ · A)

∂t
= −∇2φ = 4πρ (2.6)

which is simply the Poisson equation with solution

φ(r, t) =

∫

ρ(r′, t)
|r− r′|dr

′ (2.7)

The scalar potential in Coulomb gauge is thereby seen to be the instantaneous Coulomb
potential due to a charge density ρ(r, t).

In the absence of charge and currents (ρ = 0, j = 0), the scalar potential is identically
zero and insertion of Eq.(2.2) in Eq.(2.1d) gives the equation

∇2A− 1

c2
∂2A

∂t2
= 0 (2.8)
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which describes the propagation of electromagnetic waves in free space. Solutions have
the form

A (r, t) = A0e
i(k·r−2πνt) (2.9)

where ν is the frequency. Direct application of the Coulomb gauge condition Eq.(2.4) gives

k ·A = 0 (2.10)

which means that the vector potential A Eq.(2.9) is perpendicular to the direction of
propagation k of the wave. The vector potential is then said to be transversal. In Coulomb
gauge the electric field splits up into a transversal E⊥ and longitudinal E‖ part defined by

∇ · E⊥ = 0 ⇒ E⊥ = −∂A
∂t

∇ ×E‖ = 0 ⇒ E‖ = −∇φ
(2.11)

The magnetic field B can only have a longitudinal contribution, which is explicitly shown
by Eq.(2.1a). If we now insert the definition of the longitudinal electric field E‖ into
Eq.(2.1c), we see, analogous to Eq.(2.6), that the longitudinal field is associated with the
instantaneous Coulomb interaction and is uniquely determined by the charge distribution
ρ. This also demonstrates that in Coulomb gauge all retardation and magnetic interactions
enter the transverse part of the electromagnetic field. A disadvantage of the Coulomb
gauge is that it is not Lorentz invariant, so that if one changes the frame of reference
a gauge transformation is in general needed in order to reestablish the gauge conidtion
Eq.(2.4).

The link between classical and quantum electrodynamics can be summed out by a
short historic survey: At the end of the last century it was realized that the electro-
magnetic field could be treated as a collection of independent harmonic oscillators, each
associated with a particular frequency ν. A major step towards quantum mechanics was
the postulate made by Planck in 1900 [124] stating that the energy absorbed or emitted
by such radiation oscillators were not continuous, but appeared in quanta of hν. This pos-
tulate was necessary in order to avoid the radiation catastrophe in blackbody radiation.
In 1905 Einstein explained the photoelectric effect by assuming that the electromagnetic
field could be considered as a collection of independent energy quanta2 of magnitude hν.
Then, in 1927, Dirac laid the foundations of quantum electrodynamics by introducing
creation and annihilation operators of photons to describe the interaction of light with
matter. Finally, in 1932 Bethe and Fermi described electromagnetic interaction in terms
of virtual photon exchange. This lead to expressions for the electron-electron interaction in

2The word ’photon’ was first introduced in 1926 by G.N.Lewis [125].
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configuration space which depends on the momentum ω transferred by the exchanged pho-
ton [126, 127, 11, 128, 129, 130]. In the Coulomb gauge the electron-electron interaction
ĝω(1, 2) (single-photon exchange) is given by

ĝω;C(1, 2) =
1

r12
− α1 · α2

r12
exp (iω12r12)+ (α1 · ∇1) (α2 · ∇2)

exp (iω12r12) − 1

ω2
12r12

(2.12)

where r12 is the interelectron distance. In the Feynman (Lorentz) gauge the interaction is
given by

ĝω;F (1, 2) =
1 − α1 · α2

r12
exp (iω12r12) (2.13)

The exponential part exp (iω12r12) represents the retardation of the interaction. The
real part of the exponential leads to shifts in energy levels, whereas the imaginary part
contribute only to the level width [11] and will be omitted in this discussion (i.e. we may
replace exp (iω12r12) by cos (ω12r12) in the expressions above). In the expressions above
we recognize (1/r12) as the instantaneous Coulomb interaction and (α1 · α2) /r12 as the
instantaneous magnetic interaction of the electron spins. We see that in the Lorentz gauge
both the the electric and magnetic interactions are explicitly retarded, corresponding
to the exchange of both transverse and longitudinal photons. In the Coulomb gauge
only the instantaneous magnetic interaction is explicitly retarded, which corresponds to
quantization of only the transverse part of the electromagnetic field [131, 132]. This can
be understood from the discussion of Coulomb gauge above.

The momentum transfer ω of the exchanged photon refers to one-electron states such
that if we consider the transition probability

|〈C(1)D(2) |ĝω(1, 2)|A(1)B(2)〉|2 (2.14)

between two-electron states |A(1)B(2)〉 and |C(1)D(2)〉 , the ω is defined as

ω = ωAC =
|εA − εC |

c
= ωBD =

|εB − εD|
c

(2.15)

where the ε’s are one-electron energies [127]. Consequently, the evaluation of Eq.(2.14)
requires the definition of such one-electron states. This reflects the independent-particle
approach inherent in QED. The quantization of the Dirac field effectively defines electrons
and positrons [133, 134, 135], since the creation and annihilation operators refer to a
complete set of solutions of the Dirac equation. The ”free picture” employs the complete
set of solutions of the free particle Dirac equation, whereas the ”bound state interaction
picture” or ”Furry picture” [136] use the complete set of solutions of the Dirac equation
in the presence of some external field. The complete set of bound state electrons and
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positrons are related to the set of free electrons and positrons by a unitary transformation
which ”dresses up” the particles.

We immediately realize that the evalution of matrix elements in configuration space
involving the ω-dependent electron-electron interaction becomes exceedingly difficult. For
single-configuration calculations one-electron energies may be approximated by Koop-
mans’ theorem, whereas no clear-cut definition of one-electron energies exists in a multi-
configurational approach [127]. We will therefore have to resort to approximations which
eliminates the ω-dependence. It turns out that the consequences of this approximation are
not all that severe, since corrections due to the ω-dependence are found to contribute only
to order Z5α4 [137, 138]. In the limit ω → 0 (the low-frequency limit), the electron-electron
interaction in the Coulomb gauge reduces to the Coulomb-Breit interaction

lim
ω→0

ĝω;C = ĝCoulomb + ĝBreit (2.16)

consisting of the instantaneous Coulomb interaction

ĝCoulomb =
1

r12
(2.17)

and the Breit term [139]

ĝBreit = −
{

α1 · α2

r12
+

(α1 · ∇1) (α2 · ∇2) r12
2

}

(2.18)

where ∇1 and ∇2 act only on r12 and not on the wave function. The Breit term is usually
expressed as

ĝBreit = −
{

α1 · α2

2r12
+

(α1 · r12) (α2 · r12)

2r312

}

(2.19)

Correspondingly, the electron-electron interaction in the Feynman gauge reduce to the
Coulomb-Gaunt interaction

lim
ω→0

ĝω;F = ĝCoulomb + ĝGaunt (2.20)

where the Gaunt-term [140]

ĝGaunt = −α1 · α2

r12
(2.21)

represents the direct magnetic interaction of electron spins. Note that the Breit term may
be written in terms of the Gaunt term and a gauge-dependent term

ĝBreit = ĝGaunt + ĝgauge; ĝgauge =
(α1 · ∇1) (α2 · ∇2) r12

2
(2.22)
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The Coulomb-Breit interaction is correct to order (Zα)2. In order to achieve the same
accuracy for the low-frequency limit of the electron-electron interaction in Feynman gauge,
it is necessary to add a ω-dependent term

−1

2
ω2r12 (2.23)

Due to the appearance of this term to order (Zα)2 , it has been claimed inconsistent to use
the Coulomb-Gaunt interaction in relativistic calculations [141, 130]. However, the choice
of what electron-electron potential to use should be based not only on order analysis, but
also on what physical effects are included and, in the final instance, on the computational
demands.

Let us therefore look at the physical content of the ω-independent two-electron op-
erators. We can do so by performing a reduction of the two-electron operators to a
two-component form correct to order (Zα)2, analogous to the derivation of the Pauli-
operator Eq.(1.163) in section 1.8. The Coulomb-Breit interaction has been reduced to
two-component form by Chraplyvy et al. [142, 143, 144] by a Foldy-Wouthuysen trans-
formation, and the result is discussed in Moss [40]. The result may be combined with
the Pauli-operator to form the so-called Breit-Pauli Hamiltonian [145]. I have redone this
derivation for the Gaunt and gauge terms separately in order to see what terms in the
Breit-Pauli Hamiltonian are derived from the Gaunt term. Details about the derivation
are provided in Appendix B. Here we just state results. The instantaneous Coulomb
interaction reduce to

ĝCoulomb : 1
r12

(a)

− 1

4m2c2r312
[σ1 · (r12 × p1) − σ2 · (r12 × p2)] (b)

− 1

m2c2
πδ(r12) (c)

(2.24)

We expect the terms generated by the instantaneous Coulomb interaction to be analogous
to the terms in the Pauli-operator Eq.(1.163) depending on the nuclear potential since we
have simply replaced this potential by the corresponding potential from an electron. We
do indeed find the expected analogy and can interpret the various terms as follows:

(a) Coulomb interaction

(b) Spin-own orbit interaction:
the spin-orbit interaction of a electron generated by the electric field of another
electron.

(c) Darwin-type correction to the Coulomb term:
a correction to the Coulomb interaction Eq.(2.24a) due to Zitterbewegung.
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The Gaunt-term reduce to

ĝGaunt : − 1

m2c2r12
(p1 · p2) (a)

+
1

2m2c2r312
[σ1 · (r12 × p2) − σ2 · (r12 × p1)] (b)

+
1

4m2c2
[

r−3
12 (σ1 · σ2) − 3r−5

12 (σ1 · r12) (σ2 · r12)
]

(c)

− 2π

3m2c2
(σ1 · σ2) δ(r12) (d)

− 1

2m2c2r312
(r12 · ∇12) (e)

− 1

m2c2
πδ(r12) (f)

(2.25)

and the gauge-term contributes

ĝgauge : − 1

2m2c2
(p1 · ∇1) (p2 · ∇2) r12 (a)

+
1

2m2c2r312
(r12 · ∇12) (b)

+
1

m2c2
πδ(r12) (c)

(2.26)

By adding contributions from the two terms we obtain the reduced Breit term

ĝBreit : − 1

m2c2

[

r−1
12 (p1 · p2) +

1

2
(p1 · ∇1) (p2 · ∇2) r12

]

(a)

+
1

2m2c2r312
[σ1 · (r12 × p2) − σ2 · (r12 × p1)] (b)

+
1

4m2c2
[

r−3
12 (σ1 · σ2) − 3r−5

12 (σ1 · r12) (σ2 · r12)
]

(d)

− 2π

3m2c2
(σ1 · σ2) δ(r12) (e)

(2.27)

where the individual terms are interpreted as folllows

(a) Orbit-orbit interaction:
This term corresponds exactly to the Breit term Eq.(2.18) if we make the substitution

α → p

mc
(2.28)
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This corresponds to the transition from the relativistic velocity operator cα Eq.(1.171)
to the corresponding non-relativistic operator (p/m). The orbit-orbit term repre-
sents the classical retardation correction to the Coulomb interaction in the Coulomb
gauge. It is readily rearranged to its more conventional form [146]

= − 1

m2c2

{

p1 · p2

2r12
+

(p1 · r12) (p2 · r12)

2r312

}

(2.29)

The first term, which is derived from the Gaunt term, may be interpreted as a
current-current interaction. The second term stems from ĝgauge and is consequently
gauge-dependent.

(b) Spin-other orbit interaction:
the interaction of the spin of an electron with the magnetic field generated by the
current of another electron. There is no analogous term arising from the molecular
field, since teh nuclei are assumed to be a stationary sources.

(c) Spin-spin interaction:
direct dipolar interaction between two spins.

(d) Fermi-contact interaction:
it can be regarded as a finite-size correction to the spin-spin interaction

In conclusion, we see that with the exception of the gauge-dependent term Eq.(2.26a),
which contributes to the orbit-orbit interaction, the whole physical content of the Breit
term is provided by the Gaunt term as well. The Gaunt term in addition gives rise to
two terms. The first Eq.(2.25f) corresponds to a Darwin-type correction of the Coulomb
interaction, whereas the other has a less straightforward physical interpretation. The two
extra terms are cancelled by corresponding terms from ĝgauge. It should be noted that none
of the extra terms are spin-dependent, which means that the Coulomb-Gaunt interaction
will give the total spin-orbit interaction correct to order (Zα)2. In general, the Gaunt term
accounts for about 90% of the Breit term in atomic calculations and shifts the total energy
upwards, whereas the gauge term lowers the total energy [147]. Multiconfigurational
calculations on helium-like ions [127] has shown that at around Z = 50 the correlation
energy from the Gaunt term becomes larger than the correlation from the Coulomb term.
However, the Gaunt term appears to be of importance only near nuclei [126], which makes
the Gaunt interaction mainly localized to atoms, so that it is not expected to significantly
change molecular properties such as bond lengths. Our Dirac-Fock calculations on PtH
(paper IV) and previous calculations on hydrides of group IVA by Visser et al.[148] show
that the Gaunt term has a negligible effect on molecular bond lengths. Visser et al. [148]
found that the Gaunt term favors bond expansion, yet in PbH4 the expansion is only 0.17
pm.
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From the discussion above, we can conclude as follows: The Coulomb interaction, which
may be regarded as the zeroth order term of an expansion in (Zα)2 of the full electron-
electron interaction, appears to be sufficient for the calculation of molecular potential
surfaces. Corrections of order (Zα)2 to the Coulomb-interaction are largely atomic in
nature and need only be considered when properties dependent on the electronic density
in the nuclear region are studied. The Gaunt term alone ensures correct contributions
from electronic potentials to the total spin-orbit interaction to order (Zα)2 and may
therefore be included in accurate calculations of spin-orbit splittings. The Gaunt term is
straightforwardly implemented in a finite basis approximation, since it reduces to ordinary
Coulomb repulsion integrals in a scalar basis. The gauge-dependent term, on the other
hand, leads to more complicated two-electron integrals.
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2.2 Relativistic molecular calculations

There is something fascinating about science. One gets such wholesale
returns of conjecture out of such a trifling investment of fact.

M.TWAIN (1874) [149]

Theoreticians get such amazing returns from such a small investment
of fact combined with a few hours on a Cray Y/MP.

I.M.Klotz (1990)

2.2.1 The Dirac-Coulomb Hamiltonian

In this section we arrive at the main goal of our study, namely relativistic molecular
calculations. Ideally we would like a Lorentz invariant description of molecular systems,
but from the discussion in the previous sections, it is clear that such a description can
only be approximate. Let us briefly review the approximations involved.

First, the Born-Oppenheimer approximation is inherently incompatible with the the-
ory of special relativity since it singles out a preferred reference frame, namely the frame
in which nuclei can be treated as stationary sources of external fields. Relativistic correc-
tions to the nuclear motion are, however, expected to be small [150]. The advantage of
the Born-Oppenheimer approximation is that it reduces the complexity of the molecular
description and allows us to focus our attention on the electronic degrees of freedom. The
eigenvalues of the electronic Hamiltonian defined by the Born-Oppenheimer approxima-
tion are assumed to vary smoothly as a function of nuclear coordinates. This leads to the
concept of molecular potential energy surfaces.

Second, we have neglected all hyperfine effects, that is we have neglected nuclear
spins. As discussed in section 1.7, this leads to a time reversal symmetric Hamiltonian.
The hyperfine effects also include effects of a possible nuclear electric quadrupole moment.
We can model this, for example by inclusion of Gaussian d functions in a finite nucleus
model.

Third, the description of even a single electron in the molecular field leads to a many-
body problem due to the possible creation of virtual electron-positron pairs. The proper
treatment of the problem can only be obtained within the framework of QED, which allows
the number of particles in the system to vary. We avoid working with the full mathematical
machinery of QED by invoking the no-pair approximation, that is we neglect all pair
creations. This means that we stay within the framework of Dirac’s hole theory with the
Dirac sea of negative energy electrons at all times completely filled. It corresponds to
working with classical fields and implies neglect of QED effects, such as self energy and
vacuum polarization, which represent the interaction of the electron with the zero-point
fluctuations of the quantized electromagnetic and Dirac fields, respectively [87].

Fourth, the electron-electron interaction can be handled correctly only to order (Zα)2
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if we want to avoid ω-dependent terms. Note that this approximation is closely tied
to the no-pair approximation. If we allow virtual pair creation, we must take into ac-
count electron-positron interaction in terms of virtual photon exchange, and this leads to
non-negligible ω-terms of order 2mc. The level of accuracy obtained with the truncated
electron-electron interaction is, however, expected to be sufficient for all relevant chemical
properties. In fact, for the determination of molecular potential energy surfaces, experi-
ence so far [148, 31] indicate that the Coulomb interaction alone appears to provide an
adequate description.

We therefore choose the Dirac-Coulomb Hamiltonian as the starting point for relativis-
tic molecular calculations, but may consider inclusion of the Gaunt-term for the study of
properties that depend on the electron density near the nuclei, or when we want very
accurate spin-orbit splittings. The Dirac-Coulomb Hamiltonian for a molecular system of
n electrons in the field of N nuclei has the form

ĤDC =

n
∑

i=1

ĥD;V (i) +

n
∑

i<j

ĝCoulomb(i, j) + V̂N−N (2.30)

The first term is a sum over one-electron Dirac operators in the molecular field (see section
1.7)

ĥD;V = β′mc2 + c (α · p) + V̂e−N (2.31)

The second term describes the electron-electron interaction in terms of the instanta-
neous Coulomb interaction. Even though this operator has the same operator form as
the electron-electron interaction in non-relativistic theory, its physical content is different
since it includes spin-own orbit interactions and Darwin-type corrections to the Coulomb
interaction, as seen in section 2.1. The last term is the Coulomb interaction of nuclei.

V̂N−N =
N
∑

I<J

ZIZJ

rIJ
(2.32)

The Dirac-Coulomb Hamiltonian is an intuitive extension of the non-relativistic elec-
tronic Hamiltonian , but the validity of ĤDC and the resulting Dirac-Coulomb equation

ĤDCΨ = EΨ (2.33)

has been surrounded by considerable controversy. We shall return to this in section 2.2.6.
Let us first note, however, that the inclusion of the electron-electron interaction enforces
a fifth approximation in our description of molecular systems, since the Dirac-Coulomb
equation represents a many-body problem and has no analytical solutions. From a math-
ematician’s point of view the Dirac-Coulomb equation is nightmarish, since it constitutes
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a set of multivariable coupled first order differential equations with one singularity for
every pair of particles in the system. Yet we can provide approximate solutions to it of
high accuracy. The key to success lies in the use of physical-chemical understanding in
the construction of approximate solutions.

2.2.2 The variational method

Approximate solutions to the Dirac-Coulomb equation can be obtained by perturbation
theory or by the variational method. We shall consider the latter method. The basic idea
of the variational method is to introduce a trial function furnished with parameters that
can be varied so as to obtain the best possible approximate solution within the parameter
space. The parametrization of the trial function leads to a parametrization of its energy,
defined as the expectation value of the Dirac-Coulomb Hamiltonian. Approximations to
the exact eigenfunctions of the Hamiltonian are found as stationary values of the energy
in the parameter space [151]. Note that if the variational parameters are introduced in a
non-linear manner, the reciprocal relation does not hold true, so that a stationary value
of the energy may correspond to a physically unacceptable solution of the Dirac-Coulomb
equation [152]. Let us consider the general form of the trial function in molecular electronic
structure theory.

The basic building blocks for approximative wave functions are molecular orbitals
(MOs) and electronic configurations. They can be introduced as follows: If we turn off the
electron-electron interaction, the electronic Hamiltonian reduce to a sum of one-electron
Dirac operators, and the wave function may be written as a Hartree product of one-electron
molecular 4-spinors

Φ =

n
∏

i=1

ψi(ri) (2.34)

The spinors are chosen from the complete set {ψi} of orthonormal solutions to the corre-
sponding Dirac equation in the molecular field. We shall refer to any set of one-electron
functions as our 1-particle basis and denote the individual one-electron functions molec-
ular orbitals (MO). Physically Eq.(2.34) is, however, not an acceptable many-electron
wave function, since it does not obey the Pauli-principle, which states that the many-
electron wave function should change sign under the permutation of any pair of electrons
(fermions). We can remedy the situation by antisymmetrizing the wave function, for
example by writing it as a Slater-determinant

Φ =
1√
n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(1) ψ2(1) . . . ψn(1)
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...
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(2.35)
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of orthonormal molecular orbitals

〈ψi | ψj〉 = δij (2.36)

The Slater-determinant represents a particular electronic configuration, namely the set of
molecular orbitals appearing in the determinant. When the electron-electron interaction
is turned on, it is no longer possible to separate the electronic degrees of freedom, and
the exact electronic wave function can no longer be expressed in terms of a single Slater-
determinant. It can, however, be expanded in all possible Slater-determinants that can be
generated from the complete 1-particle basis:

Ψ =
∑

i

ciΦi (2.37)

The exact solution is thereby defined in terms of complete 1- and n-particle bases, where
the set {Φi} of Slater-determinants in Eq.(2.37) constitute the n-particle basis. We may
therefore seek approximate solutions of the Dirac-Coulomb equation in the space of trun-
cated 1 and n-particle bases. The search for stationary energies then corresponds to
separate rotations within the 1-particle basis and within the n-particle basis.

The simplest variational approach is to (in the closed-shell case) choose a single Slater
determinant Eq.(2.35) as the trial function. This forms the basis for the Hartree-Fock (HF)
method in non-relativistic theory and the Dirac-Fock (DF) method in relativistic theory.
These are independent particle models that view the electron as moving independently in
the field of the nuclei and the average field of the other electrons. The independent particle
model usually provides an adequate description of molecular structure at the equilibrium
geometry, but fails in situations where degeneracies or near-degeneracies of configura-
tions occur. Near-degeneracies typically arise in bond breaking and bond formation, in
open-shell and excited states. In relativistic molecules, additional near-degeneracies may
be introduced by the fine structure of the spin-orbit splitting. Such systems require a
multiconfigurational approach. The most compact and flexible description is provided
by the Multi-Configurational Self-Consistent Field (MCSCF) method, which allows both
configurational and orbital parameters to vary.

At this point, it will be convenient to summarize the papers included in the thesis in
order to avoid overlap in the presentation.
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2.2.3 Summary of papers

• PAPER I:

T. Saue, T.Helgaker, K. Fægri and O.Gropen:
Principles of direct 4-component relativistic SCF:

Application to dihydrides of group 16

Manuscript.

In this paper we present the theory of direct 4-component SCF calculations based on a
quaternion formulation of the Dirac-Fock equations. In the closed-shell Dirac-Fock model,
bound electronic states of the Dirac-Coulomb Hamiltonian Eq.(2.30) are approximated
by a trial function in the form of a single Slater-determinant Eq.(2.35). In the finite
basis approximation we expand each component of the molecular 4-spinors in a real (AO)
basis We seek stationary values of the total energy under the constraint of orthonormal
molecular orbitals. As in the non-relativistic theory, this leads to a pseudoeigenvalue
equation in terms of the expansion coefficients c. We proceed by showing that due to
time reversal symmetry we may reduce the Dirac-Fock equations to a quaternion form
Eq.(1.101)

QF Qc =
[

Fαα + Fαβ ̌
] [

cα − cβ∗̌
]

= εQS
[

cα − cβ∗ ̌
]

= εQS Qc (2.38)

This reduces the operation count and memory requirement for the construction of the
Fock matrix by a factor two. The quaternion formalism furthermore brings the two-
electron Fock matrix onto a form that is readily incorporated into existing software for
non-relativistic calculations. By a quaternion diagonalization of the Fock matrix we obtain
well-defined Kramers partners, which allows efficient use of time reversal symmetry in
post-DF applications.

The quaternion Dirac-Fock equations are solved iteratively by the direct SCF method,
in which two-electron integrals are regenerated in each SCF iteration. This eliminates the
frequent problems with disk storage and I/O load in the standard Dirac-Fock approach and
makes DF-calculations on workstations feasible. Integral batches are prescreened based
on the differential density matrix approach. The integral presecreening is supplemented
by separate screening of Coulomb and exchange contributions to the Fock matrix. The
SCF convergence is accelerated by the implementation of the DIIS method.

We have applied the 4-component direct SCF method to the dihydrides of tellurium,
polonium and eka-polonium (element 116). We find the expected bond shortening due
to relativity in H2Te and H2Po. In the dihydride of element 116 we observe, however, a
dramatic bond expansion due to the extreme spin-orbit splitting of the 7p orbital in the
eka-polonium atom. This spin-orbit effect is further analyzed in paper V.
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• PAPER II:

T. Saue and H.J.Aa. Jensen:
Quaternion symmetry in relativistic molecular calculations:

I. The Dirac-Fock method

Submitted to J. Chem. Phys.

In this paper we consider the use of the full symmetry group of the Dirac-Coulomb Hamil-
tonian to reduce the computational effort in the Dirac-Fock method. The full symmetry
group consists of all operators, unitary or antiunitary, that commute with the Dirac-
Coulomb Hamiltonian. In practice, we obtain the full symmetry group as the direct
product of the time reversal operator and the molecular point group. Due to the presence
of antiunitary operators we can no longer form true matrix representations of the group.
It is, however, still possible to establish a system of matrices, a corepresentation that can
be broken down to irreducible forms. We denote the irreducible forms ircops.

We limit spatial symmetry to D2h and subgroups, which we collectively denote binary
groups, since they constitute the set of all single point groups with no elements of order
higher than two. The binary groups can be classified as quaternion, complex and real
based on the distribution of Kramers partners among the fermion irreps of the molecular
double point group:

1. Quaternion groups: C1, Ci

2. Complex groups: Cs, C2, C2h

3. Real groups: C2v, D2, D2h

In the case of real (complex) groups the Fock matrix in a Kramers restricted MO-basis
automatically reduce to a real (complex) matrix. It is, however, the construction of
the Fock matrix in AO-basis that constitute the time-consuming step in a Dirac-Fock
calculation. We show that by a simple quaternion transformation of the real basis, it
is possible to obtain the same matrix reduction in the AO-basis as well. The symmetry
scheme amounts to a simple scheme of phase insertion that require virtually no extra
computational effort, but leads to considerable computational gains, as is demonstrated
by a numerical example.
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• PAPER III:

H.J.Aa.Jensen, K.G.Dyall, T.Saue and K.Fægri:
Relativistic 4-component Multi-Configurational Self-Consistent Field

Theory for Molecules: Formalism

Accepted for publication in J.Chem.Phys.

In this paper we outline the most general multi-configurational approach to relativis-
tic molecular calculations, namely the multi-configurational self-consistent field (MCSCF)
method in which both configurational and orbital parameters are allowed to vary. We em-
ploy the second quantization formalism whereby the Dirac-Coulomb Hamiltonian Eq.(2.30)
is expressed by

ĤDC =
∑

pq

〈

p
∣

∣

∣
ĥD;V

∣

∣

∣
q
〉

p†q +
1

2

∑

pqrs

〈

pq
∣

∣

∣
ĝCoulomb

∣

∣

∣
rs
〉

p†r†sq (2.39)

where p† and p are creation and annihilation operators for 4-spinor p. Time reversal
symmetry is enforced by transformation to Kramers restricted basis. This leads to the
introduction of Kramers single X±

pq and double x±,±
pq,rs replacement operators.

The parametrized Kramers restricted MCSCF wave function has the form

|MC(δ,κ)〉 = exp (−κ̂) |δ〉 (2.40)

where exp (−κ̂) is an exponential parametrization of orbital rotations and where the con-
figurational variational parameters δ describe a correction vector orthogonal to the current
configuration expansion.

MCSCF methods require second order optimization methods for controllable conver-
gence. This implies knowledge of the Hessian (second derivative) matrix (or approxima-
tions to it). Key ingredients in the formalism that make large configuration expansions
feasible are:

1. The unitary parametrization exp (−κ̂) of the orbital optimization ensures the or-
thonormality of molecular orbitals, so that unconstrained optimization techniques
can be used.

2. The Hessian matrix times a vector is calculated directly by iterative techniques so
that the individual elements of the matrix need not be known.

3. The restricted step second order optimization techniques is a robust technique for
sharp and well-controllable convergence in relatively few iterations.
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A major difference with the corresponding non-relativistic method is the replacement
of the non-relativistic minimization principle with a minimax principle for ground state
optimization.
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• PAPER IV:

L.Visscher, T.Saue, W.C.Nieuwpoort, K.Fægri and O.Gropen:
The electronic structure of the PtH molecule:

Fully relativistic configuration interaction calculations

of the ground and excited states

J.Chem.Phys. 99 (1993) 6704–6715

In this paper we investigate the lower five states of the the open-shell molecule platinum
hydride by 4-component configuration interaction (CI) calculations. We have used the
MOLFDIR [22] package for relativistic molecular calculations. The CI program is based
on the restricted active space (RAS) formalism. The desired roots of the CI Hamiltonian
matrix are found by iterative techniques.

The characteristics of the five lower states are largely dominated by the spin-orbit
splitting of the 5d orbital in the platinum atom, which is of the order 10 000 cm−1.
Thus we find three lower states arising from the splitting of a 5d4

3/25d
5
5/2σ

2
1/2 electronic

configuration in the molecular field and two upper states arising from the 5d3
3/25d

6
5/2σ

2
1/2

configuration. The bonding is to a large extent a σ(s–s) bond, but with some contribution
from the platinum 5d orbitals. The effect of the Gaunt term was investigated at the
SCF level by including it perturbatively, and was found to be negligible for spectroscopic
properties of PtH. The main correlation effects stem from the angular correlation of the 5d
orbitals and lead to bond shortages on the order 4 pm and an increase in the dissociation
energy of about 0.5 eV. The high stability of the Pt-H bond can be explained by the
relativistic stabilization of the 6s orbital.
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• PAPER V:

T.Saue, K.Fægri and O.Gropen:
Relativistic effects on the bonding of heavy and superheavy hydrogen halides

Submitted to Phys.Rev.Lett.

In this paper we have investigated bonding in heavy and superheavy hydrogen halides
by direct 4-component SCF calculations using the DIRAC code. We find a relativistic
bond contraction of 0.6 pm in hydrogen iodide. In hydrogen astatide there is, however,
a slight bond expansion of 0.3 pm, and in the hydride of eka-atstatine (element 117) we
find a huge bond expansion of 12.9 pm.

We have analyzed the bonding in the three molecules by projecting the molecular
orbitals down onto the vectors of the halide ions. It then becomes clear that the huge
bond expansion observed for the hydride of eka-astatine is due to the extreme spin-orbit
splitting of the atomic 7p orbital. The bonding in the corresponding hydride is thereby
dominated by the radially diffuse 7p3/2 orbital.
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2.2.4 The small component density

The small components are denoted ”small” because they tend towards zero for electronic
solutions in the non-relativistic limit c → ∞, as discussed in section 1.8. In this section
I consider the smallness of the small components for the finite speed of light. I have
calculated the small component density for the elements Z = 1 to Z = 103 using the
numerical 4-component atomic code GRASP [117]. The results are presented in Tab.2.2.4
and graphically in Fig.2.1. It is seen that the small components contribute an electron only
for the heaviest element Z = 103 in the series. Also, we note from Fig.2.1 that there is no
sign of periodic structure in the small component density as a function of atomic number.
Rather we see a smooth curve that is readily fitted by a low-order polynomial of the atomic
number. This indicates that the small component density is largely located to the nuclear
region, where it experiences the almost unscreened nuclear charge. I have investigated this
further by plotting the small component density for the radon atom Z = 86 in Fig.2.2.
It shows that the small component density is approximately limited to a region within
0.2 bohrs from the nucleus. For comparison, the radial expectation values of the atomic
spinors with n = 2 are found in the region 0.1 – 0.2 bohrs. In Tab.2.2.4 the accumulation
of the small component density is listed for the radon atom. It shows that the outer shell
(n = 6) of the radon atom accounts for only 0.13 % of the total small component density
of 0.62805 electrons.

The small component density is seen to be highly localized and thereby atomic in na-
ture, so that we do not expect the appreciable changes in the small component density
when the atom enters a molecule. This suggests that the interaction of small component
densities at different atomic centers may be modelled by Coulombic repulsion. Visscher
[153] found that the neglect of SS integrals in a relativistic calculation on At2 using the
4-component version of coupled-cluster singles and doubles with perturbative treatment
of triples CCSD(T) [32] led to an error in the bond length of 10.8 pm compared to a cal-
culation with all integrals included. He was, however, able to correct this error completely
by representing the contribution from the SS integrals by a Coulombic interaction of point
charges Eq.2.32 using the small component density of the astatine atom. For hydrides
of heavy atoms, the neglect of SS integrals appears to have negligible influence on bond
lengths [154, 155], but this is due to the fact that the small component density for the
hydrogen atom is for all purposes equal to zero, so that there is no Coulombic repulsion
from the SS integrals.



78 Ch.2 Many-electron systems

Table 2.1: Total small component density for all elements from Z = 1 to Z = 103. The numbers
marked with an asterisk have been obtained by interpolation.

1 H 0.0000 22 Ti 0.0227 43 Tc 0.1141 64 Gd 0.3003∗ 85 At 0.6097
2 He 0.0001 23 V 0.0252 44 Ru 0.1206 65 Tb 0.3118 86 Rn 0.6281
3 Li 0.0002 24 Cr 0.0279 45 Pd 0.1273∗ 66 Dy 0.3238 87 Fr 0.6468
4 Be 0.0004 25 Mn 0.0308 46 Pd 0.1343 67 Ho 0.3360 88 Ra 0.6659
5 B 0.0007 26 Fe 0.0339 47 Ag 0.1415 68 Er 0.3485 89 Ac 0.6854
6 C 0.0010 27 Co 0.0371 48 Cd 0.1489 69 Tm 0.3614 90 Th 0.7053
7 N 0.0014 28 Ni 0.0405 49 In 0.1566 70 Yb 0.3746∗ 91 Pa 0.7256
8 O 0.0020 29 Cu 0.0440 50 Sn 0.1644 71 Lu 0.3879 92 U 0.7464∗
9 F 0.0026 30 Zn 0.0478 51 Sb 0.1725 72 Hf 0.4017 93 Np 0.7675∗
10 Ne 0.0034 31 Ga 0.0517 52 Te 0.1809 73 Ta 0.4157 94 Pu 0.7888
11 Na 0.0043 32 Ge 0.0558 53 I 0.1895 74 W 0.4301 95 Am 0.8107
12 Mg 0.0053 33 As 0.0602 54 Xe 0.1983 75 Re 0.4447 96 Cm 0.8332∗
13 Al 0.0065 34 Se 0.0647 55 Cs 0.2073 76 Os 0.4597 97 Bk 0.8560∗
14 Si 0.0077 35 Br 0.0694 56 Ba 0.2166 77 Ir 0.4750 98 Cf 0.8790
15 P 0.0091 36 Kr 0.0743 57 La 0.2261 78 Pt 0.4907 99 Es 0.9027
16 S 0.0106 37 Rb 0.0793 58 Ce 0.2359∗ 79 Au 0.5067 100 Fm 0.9268
17 Cl 0.0123 38 Sr 0.0846 59 Pr 0.2459 80 Hg 0.5230 101 Md 0.9514
18 Ar 0.0141 39 Y 0.0901 60 Nd 0.2563 81 Tl 0.5396 102 No 0.9765
19 K 0.0160 40 Zr 0.0958 61 Pm 0.2668 82 Pb 0.5566 103 Lr 1.0020
20 Ca 0.0181 41 Nb 0.1017 62 Sm 0.2777∗ 83 Bi 0.5739
21 Sc 0.0203 42 Mo 0.1078 63 Eu 0.2888 84 Po 0.5916
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Table 2.2: Accumulation of small component density in the radon atom.

Individual contributions Accumulated density

1s1/2 .1089 .21789 ( 34.69%)

2s1/2 .2537 · 10−1 .26864 ( 42.77%)

2p1/2 .2544 · 10−1 .31952 ( 50.87%)

2p3/2 .2206 · 10−1 .40777 ( 64.93%)

3s1/2 .8629 · 10−2 .42503 ( 67.67%)

3p1/2 .8564 · 10−2 .44216 ( 70.40%)

3p3/2 .7592 · 10−2 .47253 ( 75.24%)

3d3/2 .7449 · 10−2 .50231 ( 79.98%)

3d5/2 .7191 · 10−2 .54546 ( 86.85%)

4s1/2 .3011 · 10−2 .55148 ( 87.81%)

4p1/2 .2913 · 10−2 .55731 ( 88.74%)

4p3/2 .2568 · 10−2 .56758 ( 90.37%)

4d3/2 .2355 · 10−2 .57700 ( 91.87%)

4d5/2 .2261 · 10−2 .59057 ( 94.03%)

4f5/2 .1897 · 10−2 .60195 ( 95.84%)

4f7/2 .1858 · 10−2 .61682 ( 98.21%)

5s1/2 .8433 · 10−3 .61850 ( 98.48%)

5p1/2 .7607 · 10−3 .62002 ( 98.72%)

5p3/2 .6503 · 10−3 .62262 ( 99.14%)

5d3/2 .4733 · 10−3 .62452 (99.44%)

5d5/2 .4456 · 10−3 .62719 ( 99.86%)

6s1/2 .1531 · 10−3 .62750 ( 99.91%)

6p1/2 .1118 · 10−3 .62772 ( 99.95%)

6p3/2 .8238 · 10−4 .62805 (100.00%)
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Figure 2.1: The total small component density as a function of atomic number.
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Figure 2.2: Small component density of the radon atom (Z = 86).
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2.2.5 ”Unphysical” solutions

In paper I we have discussed basis sets in relativistic molecular calculations. Due to
their mutual coupling Eq.1.130, the large and small components have to be expanded in
separate basis sets. It is customary to relate the large

{

χL
}

and small
{

χS
}

basis sets by
the kinetic balance condition [26, 27]

{

χS
}

=
{

(σ · p)χL
}

(2.41)

which represents the non-relativistic limit of the exact coupling. In scalar basis sets,
the kinetic balance prescription in general leads to a small component basis set that is
about twice the size of the corresponding large component basis set. Charge conjugation
symmetry (section 1.6) leads to a one-to-one matching of electronic and positronic solutions
of the free particle Dirac equation. Obviously such a matching is not possible in a finite
basis approximation to the free particle equation if the large and small component bases are
of different sizes. Accordingly, the finite basis solutions to the free particle Dirac equation
will contain positronic solutions with no electronic counterpart. From charge conjugation
symmetry it follows that they must have eigenvalues of exactly −2mc2 ( = −37557.75
Hartrees) in the non-relativistic energy scale. They have no contribution from the large
components and have therefore been characterized as unphysical. In this section we show
that the ”unphysical” solutions have a very physical behaviour which sheds light on the
physics of positrons and on the Dirac-Fock method itself. We shall furthermore show how
they can be deleted from the molecular orbital (MO) space by a simple method to obtain
a one-to-one matching of basis sets.

The ”unphysical” solutions have only rest mass and no kinetic energy. From the
uncertainity principle they must therefore be delocalized over all space, to the extent
that this is possible in the finite basis approximation. Consider now the behaviour of the
”unphysical” solutions in the presence of an atom. Due to their extreme delocalization,
the ”unphysical” solutions see no atomic structure, only a point in space with charge
equal to the total charge of the atom. A positive charge is repulsive and will therefore
only introduce a downward shift in the energy of the positron. A negative charge will be
attractive and introduce bound positronic states.

I have explored this picture by a series of finite basis calculations. First I solved the
Dirac equation for hydrogenlike atoms of variable nuclear charges in a large uncontracted
Cartesian Gaussian basis. The large component basis (22s17p14d6f) consisted of 217
functions, and the small component basis (17s36p23d14f6g), generated by unrestricted
kinetic balance (see paper I), consisted of 493 functions. In Fig.2.3 I have plotted the
eigenvalue of the upper positronic solution as a function of nuclear charge. A perfect
linear fit is observed, with an intercept at Z = 0 at approximately −2mc2. The result is
therefore in complete agreement with the picture outlined above.
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Figure 2.3: The orbital energy of the upper positronic finite basis solution to the Dirac equation
for hydrogen-like atoms plotted as a function of nuclear charge Z.
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Figure 2.4: The orbital energy of the upper positronic finite basis Dirac-Fock solutions for the
calsium atom where the total charge of the system is varied by changing the number of the electrons.
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Figure 2.5: The orbital energy of the upper positronic finite basis Dirac-Fock solutions for 10-
electron systems where the total charge of the system is varied by varying the nuclear charge

Z.
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Figure 2.6: The orbital energy of the upper positronic finite basis Dirac-Fock solutions for the
neon atom where the total charge of the system is varied by changing the number of electrons.
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In order to test the sensitivity of the ”unphysical” positronic eigenvalues to atomic
structure, I performed three series of Dirac-Fock calculations in an uncontracted Cartesian
Gaussian basis. The large component basis (16s11p) consisted of 49 functions and the small
component basis (11s16p11d), generated by unrestricted kinetic balance, consisted of 114
functions. The first series of calculations were performed on the calsium-atom (Z = 20)
with variable electron occupation so as to vary the total charge of the system. The upper
positronic eigenvalue is plotted as a function of total charge in Fig.2.4. Again we observe
a linear fit, which clearly demonstrates that the delocalized positronic solution effectively
sees the calcium atom as a single point charge.

An important point regarding the Dirac-Fock (and Hartree-Fock) method is seen from
Fig.2.4. The total charge of the system is the sum of the nuclear charge and the charges of
the electrons in the system. A one-electron calcium atom accordingly has a total charge
of +19. We solve this system by diagonalising the matrix representation of the one-
electron Dirac Hamiltonian in the presence of the external field represented by a nucleus
of Z = 20. It turns out, however, that the upper positronic solution has an eigenvalue
that from the linear fit in Fig.2.4 correspond to an effective charge of +20 and not +19.
We can understand how this comes about, since the one-electron Dirac Hamiltonian does
not contain any potential term stemming from a single electron. From the point of view of
the Dirac-Fock method, it represents a zero-electron system. In the Dirac-Fock equations
for an n-electron system, the occupied Dirac-Fock orbitals describe electrons moving in
the average field of the n − 1 other electrons. On the other hand, the virtual orbitals,
electronic or positronic, experience the average potential of all n electrons 3. The question
of how to obtain the positronic solutions to the system corresponding to total charge +19
is food for thoughts.

In order to further test the insensitivity of the ”unphysical” solutions to the atomic
structure, I fixed the number of electrons in the system to ten and then varied the nuclear
charge. The upper positronic eigenvalue is plotted as a function of total charge in Fig.2.5.
We observe a perfect linear fit, which confirms the physical picture outline above. Finally, I
have considered the behaviour of the ”unphysical” solutions in the presence of an attractive
potential. I performed a series of Dirac-Fock calculations on the neon atom, but with
variable electron occupation, so as to vary the total charge of the system. The upper
positronic eigenvalue is plotted as a function of total charge in Fig.2.6. In the part of
the plot corresponding to positive total charge we see the same linear fit as before. For
negative charges, however, a non-linear deviation is observed. It corresponds to weakly
bound positrons with energies larger than −2mc2.

We can conclude that the ”unphysical” positron solutions have a very physical be-

3This has the well-known consequence that the lower virtual electronic Dirac-Fock orbitals are rather
diffuse and not particularly well suited for correlation[156, 157]. A correlated method based on a truncated
one-particle basis should therefore be performed using natural orbitals [158] or modified virtual orbitals
[159].
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haviour in terms of delocalized positrons. We also see that the appearance of positronic
solutions with energies above −2mc2 in calculations on systems with total negative charge,
does not necessarily indicate a basis set failure, but is a consequence of the positive charge
of the positron.

The ”unphysical” solutions, by their nature, do not perturb the electronic solutions,
but they reflect a redundancy in the small component basis. They can be deleted from
the molecular orbital space by the following simple method:

The Dirac-Fock equations are solved iteratively. In each SCF iteration we solve the
general eigenvalue problem

Fc = εSc (2.42)

The overlap matrix S appears since we are working within the non-orthogonal atomic
orbital (AO) basis. The general eigenvalue problem is solved by first transforming to
orthonormal (MO) basis. We may do so by a canonical orthonormalization V [160] con-
structed from eigenvalues si and eigenvectors O∗i of the overlap matrix

V = Os−1/2; OTSO = s, sij = siδij (2.43)

The eigenvalue problem is then reduced to a standard eigenvalue problem

F′c′ = εc′; F′ = V†FV, c′ = V−1c (2.44)

solved by a complex or quaternion diagonalization, depending in the formalism used. The
MO-coefficients are recovered by the backtransformation

c = Vc′ (2.45)

In the transformation to MO-basis we could of course have used any transformation that
orthonormalizes the basis, for example MO-coefficients from a given SCF iteration. The
advantage of the canonical orthonormalization is that it allows a straightforward deletion
of numerical dependencies introduced by large basis expansions. We simply delete columns
of the MO-transformation matrix V Eq.(2.43) corresponding to eigenvalues of the overlap
matrix below a selected treshold. From this we see that the MO-basis need not be of the
same size as the AO-basis. We can use the MO-transformation to project the AO-basis
down onto a MO-basis spanning a smaller space. This reduces the number of variational
parameters and might thereby improve convergence.

The deletion of ”unphysical” solutions can be embedded in the MO-transformation.
We first solve the free-particle Dirac equation in the current basis. This amounts to
solving an eigenvalue problem of the form Eq.(2.42), where F is the matrix representation
of the free-particle Hamiltonian in AO-basis. At this point we can use the canonical
orthonormalization to remove linear dependencies from the MO-space. The ”unphysical”
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positronic solutions are readily identified by their eigenvalues −2mc2 and are discarded.
The remaining set of MO-coefficients is then used as MO-transformation matrix in all
subsequent SCF iterations, thereby ensuring the removal of both linear dependencies and
”unphysical” solutions. The method shows that projection operators are straightforwardly
emebedded in the MO-transformation. We will exploit this in the next section.

2.2.6 Variational stability of the Dirac-Coulomb Hamiltonian

We now return to the controversy surrounding the validity of the Dirac-Coulomb Hamil-
tonian. The discussion was initiated by Brown and Ravenhall [161]. They considered
a system of two non-interacting bound electrons. If the electron-electron interaction is
turned on as a perturbation, there will be an infinite number of degenerate states con-
sisting of one electron from the positive continuum and one positron from the negative
continuum. Thus the original bound electronic configuration will evolve into a completely
delocalized two-particle state. This is referred to as the ”continuum dissolution” or the
”Brown-Ravenhall disease”. The solution proposed by Brown and Ravenhall was to re-
strict the Hamiltonian to positive energy states by surrounding it with projection operators
and thereby neglect all pair creation processes. This solution was further expounded by
Sucher [133, 134, 135, 28]. There are, however, several possible choices of projection op-
erators. They may be defined in terms of positive energy solutions to the free particle
Dirac equation; this corresponds to the ’free’ picture of QED. Alternatively, one can de-
fine the projection operators in terms of positive energy solutions of the external field
Dirac equation (the ”Furry” picture [136]). In chemical applications, the external field
would be the molecular field defined by the nuclei. A third solution was proposed by
Mittleman [162], namely to construct the projection operator iteratively from the positive
energy solutions of the Dirac-Fock equation. This has been denoted the ”fuzzy” picture
[28]. These proposals have been reviewed by Kutzelnigg [163].

The controversy and the methodological difficulties surrounding the Dirac-Coulomb
Hamiltonian are largely resolved today, as manifested by the routine application of the
Dirac-Coulomb Hamiltonian in relativistic molecular calculations. We first note that the
no-pair approximation can only be made with reference to some 1-particle basis, which
defines what is electrons and what is positrons. The variational methods of relativistic
molecular calculations at some stage involve the construction of a one-particle basis by
the solution of an effective one-electron Dirac equation, albeit with a non-local potential.
Electronic solutions appear as excited states in the spectrum of the effective one-electron
operator. As pointed out by Talman [164, 165], they are found by application of a min-
imax principle, where the energy is minimized with respect to rotations into the virtual
electron space, and maximized with respect to rotations into the the positron space. With
a balanced basis, the electronic and positronic solutions are well separated and readily
identifiable. Once electrons and positrons have been defined, configurational expansions
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can be limited to electronic configurations, in accordance with the no-pair approximation.
In the Dirac-Fock method, the electronic solutions are straightforwardly obtained by

vector selection. This corresponds to the use of projection operators within the ”fuzzy”
picture. The projection operators need not, however, be defined explicitly. The perfor-
mance of projection operators defined within the ”free” and ”Furry” picture can be tested
within the Dirac-Fock model using the method for embedding projection operators in
the MO-transformation, outlined in the previous section. ”Free” projection operators are
obtained by first solving the free-particle Dirac equation in the AO-basis. We then dis-
card the positronic solutions and use the remaining vectors set as our MO-transformation
matrix in all subsequent SCF iterations. The ”Furry” projection operators are obtained
in analogous manner, but starting from the molecular field Dirac equation. The per-
formance of various projection operators has been studied by calculations on the radon
atom (Z = 86) in an uncontracted Cartesian Gaussian dual family basis. The large com-
ponent basis (22s19p14d9f) consisted of 253 functions, and the small component basis
(19s22p19d14f9g), generated by the unrestricted kinetic balance condition, consisted of
474 functions. The results are presented in Tab.2.2.6. The ”free” projection operator is
seen to perform poorly, which is not unexpected [166]. The introduction of an external field
leads to a ”dressing” of the free electrons and positrons. The localized bound electrons
are of a quite different nature than the delocalized free electrons. The ”Furry” projection
operator, however, is seen to perform rather well. We can understand this by the fact
that the small component density is localized mostly to the nuclear region, subject to the
almost unscreened nuclear charge. The introduction of the electron-electron interaction
therefore does not drastically change the small component density. In Tab.2.2.6 we have
also included result obtained by the method described in the previous section, where a
one-to-one matching of the large and small component basis is obtained by projecting out
the ”unphysical” free positron solutions. Thes results are seen to be equivalent to the
results obtained by the basis set extension of the atomic code GRASP [117, 96], where a
one-to-one matching of large and small component basis functions is obtained by restricted
kinetic balance defined in terms of Gaussian 2-spinors (see paper I).

2.2.7 Direct SCF: a numerical example

In paper I we have presented the theory of the 4-component SCF method. A key ingredient
in direct SCF is the screening of contributions to the Fock matrix to reduce the time spent
in each SCF iteration. In this section we illustrate the method by a numerical example.
Let us first briefly review the screening implemented in DIRAC.

Integrals are generated in batches (K,L,M,N) defined by shell indices and screening is
based on a threshold τ . In each SCF iteration we generate a density matrix over shell
indices to be kept in memory

DKL = max (Dκλ;Λ); κ ∈ K,λ ∈ L,Λ ∈ [0, 3] (2.46)
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Table 2.3: Total (EDF ) and orbital energies (in Hartrees) of the radon atom from Dirac-Fock
calculations using various schemes. UKB = the large and small component bases related by
unrestricted kinetic balance. RKB = ”unphysical” free positronic solutions projected out of the
MO-basis. VEXT = all positronic solutions of the molecular field Dirac equation projected out of
the MO-basis. FREE = all positronic solutions of the free particle Dirac equation projected out
of the MO-basis. GRASP = results from a calculation performed with the basis set extension of
GRASP, which employs restricted kinetic balance defined in terms of a Gaussian 2-spinor basis.

UKB RKB V EXT FREE GRASP

EDF −23601.879021 −23601.929261 −23601.911484 −24387.589625 −23601.930828
1s1/2 −3641.175215 −3641.172817 −3641.189420 −3904.888545 −3641.173
2s1/2 −668.806797 −668.805891 −668.810237 −707.522900 −668.8059
2p1/2 −642.279195 −642.295351 −642.284778 −671.753287 −642.2954
2p3/2 −541.101773 −541.100868 −541.105285 −553.106216 −541.1008
3s1/2 −166.829782 −166.829514 −166.830532 −176.754326 −166.8295
3p1/2 −154.879012 −154.883240 −154.880136 −162.755672 −154.8832
3p3/2 −131.728395 −131.728144 −131.729117 −135.388427 −131.7281
3d3/2 −112.562535 −112.563187 −112.563135 −116.264914 −112.5632
3d5/2 −107.756490 −107.756249 −107.756985 −110.473356 −107.7562
4s1/2 −41.310404 −41.310334 −41.310574 −44.266294 −41.31032
4p1/2 −36.012965 −36.014083 −36.013217 −38.359034 −36.01407
4p3/2 −30.117674 −30.117608 −30.117829 −31.339004 −30.11759
4d3/2 −21.544561 −21.544774 −21.544668 −22.671517 −21.54476
4d5/2 −20.435777 −20.435722 −20.435860 −21.317706 −20.43571
4f5/2 −9.190776 −9.190751 −9.190788 −9.911893 −9.190735
4f7/2 −8.925160 −8.925127 −8.925167 −9.493619 −8.925110
5s1/2 −8.405941 −8.405924 −8.405975 −9.317665 −8.405917
5p1/2 −6.405063 −6.405298 −6.405110 −7.128608 −6.405292
5p3/2 −5.172874 −5.172857 −5.172902 −5.636034 −5.172849
5d3/2 −2.186505 −2.186538 −2.186518 −2.566585 −2.013540
5d5/2 −2.013557 −2.013546 −2.013567 −2.348793 −2.186532
6s1/2 −1.068464 −1.068461 −1.068470 −1.393778 −1.068460
6p1/2 −0.536667 −0.536697 −0.536673 −.795442 −0.536698
6p3/2 −0.381745 −0.381742 −0.381749 −.590526 −0.381740



2.2 Relativistic molecular calculations 89

and for each integral batch we define

Dmax = max
(

DC
max, D

E
max

)

;

{

DC
max = 4 · max (DKL, DMN )

DE
max = max (DNL, DML, DNK , DMK)

(2.47)

We furthermore calculate a strict upper limit to the size of two-electron integrals in the
batch by

IKLMN = max [GκλGµν ]; Gκλ =
√

(κλ | κλ); κ ∈ K,λ ∈ L, µ ∈M,ν ∈ N (2.48)

In DIRAC screening is performed in two steps:

1. Prescreening of integral batches
We only calculate batches for which

DmaxIKLMN ≥ τ (2.49)

2. Prescreening of contributions
If the batch is calculated, we perform a second separate screening on Coulomb

DC
maxIKLMN ≥ τ (2.50)

and exchange integrals

DE
maxIKLMN ≥ τ (2.51)

before feeding the integrals to the routine for the construction of the Fock matrix.
If the exchange contributions are screened out, we calculate only the Coulomb con-
tributions to the Fock matrix, and vice versa.

We illustrate the method by an example. I have performed a 4-component direct
Dirac-Fock calculation on the diatomic interhalogen BrI at the experimental gas phase
bond length 248.5 pm [167] in a basis of uncontracted Cartesian Gaussian dual family
basis. The basis sets are given in Tab.2.2.7. The Dirac-Fock calculation was performed
in the following manner: In the initial SCF iterations the two-electron Fock matrix is
constructed from only LL integrals. SL integrals are not introduced into the SCF process
until the convergence on total energy is less than 1.0 ·10−4 Hartrees. Likewise, SS integrals
are not introduced until the convergence on total energy is less than 1.0 · 10−6 Hartrees.
Screening is based on the differential density approach with threshold τ = 1.0 · 10−8.
However, in a SCF iteration where a new integral class is introduced, differential densities
are replaced by true densities, in order to avoid the introduction of errors, as discussed in
paper I.
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Figure 2.7: 4-component direct SCF calculation on BrI: Percentage of integral batches screened
out in the first step.
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Table 2.4: Basis sets of uncontracted Cartesian Gaussian used in the calculation on BrI. χL and
χS refer to the large and small components basis sets respectively. The total number NT of basis
functions is the sum of the number of large (NL) and small (NS) basis set functions.

χL NL χS NS NT

Br 16s14p9d 112 14s16p14d9f 236 348
I 20s17p11d 249 17s20p17d11f 289 426

Table 2.5: Effects of screening in 4-component direct SCF calculation on BrI. The CPU-time
refers to the average (over SCF iterations) absolute time(h:min:s) and the time relative to the
unscreened case for processing integrals and Fock matrix.

Integral batches screened out (average) Average CPU-time
First step Second step

Coulomb exchange

LL integrals 41.8% 1.6% 1.3% 0:09:10 90.5%
SL integrals 51.4% 0.5% 10.9% 1:00:25 67.2%
SS integrals 77.4% 1.5% 8.2% 0:58:27 29.7%
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The effects of screening on the iterative process are summarized in Tab.2.5 and visual-
ized in Figs. 2.7,2.8 and 2.9. On average 77.4% of the SS-integral batches are screened out,
so that the time spent on generating the integrals and processing their contributions to
the Fock matrix is reduced by a factor of more than three, compared to the corresponding
calculation without screening. On average, more time is in fact spent on processing the
SL-integrals. The effect of screening Coulomb contributions is small, but this is reasonable
due to the long-range behavior of the Coulomb interaction. The screening of exchange
contributions , on the other hand, has an appreciable effect. The effect is slightly larger
for SL integrals than for SS integrals, but this is probably due to the fact that so many
batches of SS integrals are screened out in the first step. The ”dip” in the curves at
iteration 21 and 28 in Fig2.7 gives some indication of the effect the differential density
approach, because in these two iterations new integral classes are introduced and the dif-
ferential densites replaced by absolute densities. In iteration 35, near convergence, there
is a reduction in the number of integral batches that are screened out, but this is due to
the use of a dynamic threshold τ ; when the energy convergence passes below the threshold
τ , the threshold is adjusted down accordingly to increase the precision in the Fock matrix
construction.

Further studies on the effect of screening in 4-component direct SCF are needed to
optimize the process. Also, the routine for the construction of Fock matrices is currently
somewhat too slow.
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Figure 2.8: 4-component direct SCF calculation on BrI: Percentage of integral batches for which
Coulomb contributions were screened out in second step
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Figure 2.9: 4-component direct SCF calculation on BrI: Percentage of integral batches for which
exchange contributions were screened out in second step



94 Ch.2 Many-electron systems

2.3 Concluding remarks

. . . after a Dirac lecture, the session chairman asked the audience if they
had any questions. A person stood up and said ’I did not understand
the derivation of . . . etc, etc.’ Paul made no response, the chairman
asked, ’aren’t you going to answer the question?’ Paul said, ’that was
a statement, not a question.’

J.E.LANNUTTI (1987) [2]

In this thesis contributions to the theory of 4-component relativistic molecular calcula-
tions have been presented. The theory of the 4-component direct SCF method has been
implemented in the code DIRAC. The code is currently being applied to several molecular
calculations. We have also presented the theory of multi-configurational self-consistent
field (MCSCF) method. As discussed in previous sections, the need multi-configurational
approaches is amplified in the relativistic domain due to the fine structure provided by
the spin-orbit interaction. The 4-component MCSCF method is under implementation in
cooperation with K.G. Dyall and H.J.Aa.Jørgensen.

The 4-component methods provide a relativistic description of molecules. The opera-
tors have a simple structure, and are well-defined for a wide range of molecular properties.
Work is therefore in progress in the development of 4-component methods for first and
second order molecular properties. For properties dependent on the electron density in
the nuclear region, 4-component methods will be relevant even for fairly light systems.

The main difficulty of the 4-component methods lies in their computational expense.
The situation has been improved with the introduction of direct SCF methods, which
makes it possible to perform relativistic molecular calculations on work stations. There
is, however, a need to reduce the large number of integrals stemming from the small com-
ponent basis. The prospects for integral approximations looks good, due to the localized
atomic nature of the small component density. Progress in this area would open up a
wide range of chemical problems for study by 4-component methods. For large systems
such investigations will benefit from the explicit calculations of molecular gradients and
the use of second order optimization methods. This should therefore be research areas of
high priority.

We may conclude that the future for 4-component methods looks bright.
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DIRAC : documentation
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A.1 General overview

Version 2.0. Last update: Nov 14 1995 - tsaue@kelvin.uio.no

DIRAC is a FORTRAN code for relativistic molecular calculations based on the Dirac-
Coulomb (-Gaunt) Hamiltonian. It solves the the 4-component Dirac-Fock(DF) equations
by the Self Consistent Field (SCF) iterative procedure and provides tools for analysis of the
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converged wave function. DIRAC is constructed around HERMIT , a highly efficient
code for generating one- and two-electron integrals over a basis of Cartesian Gaussian
functions. The two-electron integrals naturally split into three classes:

• LL-integrals — (LL | LL)

• SL-integrals — (SS | LL)

• SS-integrals — (SS | SS)

(possibly extended by Gaunt integrals). For each integral type two integral processing
modes are accessible to the user

• conventional mode: symmetry-adapted integrals are stored on disk

• direct mode: integrals are regenerated whenever they are needed

In the latter mode a differential density matrix approach may be used to reduce the
number of integrals calculated in each iteration. This number may be reduced further
by including SL- and/or SS-integrals only at an advanced stage in the SCF-iterations,
determined by convergence criteria or by specifying the iteration at which to include
the integrals. Convergence may be enhanced by damping the Fock matrix or by Direct
Inversion of Iterative Subspaces (DIIS).

In the present version only the large component basis needs to be defined, the small
components then being generated by the kinetic balance prescription. Restricted kinetic
balance may be enforced by deleting unphysical solutions in the positron spectrum of free
electron solutions. The nuclear chrage distribution is represented by a Gaussian function to
avoid the sinuglarities introduced by point nuclei. Time reversal symmetry is implemented
using quaternion algebra, whereas spatial symmetry is restricted to the binary groups, that
is D2h and subgroups.

DIRAC is an experimental code, subject to continous change.

A.2 Recent modifications

Nov 11 1995 Overlap selection implemented with keyword OVLSEL.

Nov 11 1995 Keyword NOSMLV turns off the small component nuclear at-
traction integrals and thereby the spin-orbit interaction in the
field of the nuclei.

Nov 3 1995 File DFCYCL containing SCF history is formatted.
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Nov 3 1995 Convergence acceleration: By default DIIS is activated us-
ing a very large threshold (DIISTH). When DIIS can not
be used damping is activated using a default damping fac-
tor 0.25. DIIS can be turned off using the keyword .NODIIS.
The DIIS threshold can be modified using the keyword .DI-
ISTH. Damping can be turned off using the keyword .NODAMP.
The damping factor can be modified using the keyword typ
.DAMPFC.

Nov 3 1995 Restart facilities have been made more robust, see section
A.7.

Oct 31 1995 Even when an integral batch is generated it is possible to have
separate screening of Coulomb and exchange contributions.
Exchange contributions are generally more local and easier to
screen out. This feature is activated by the keyword .CEDIFF.

Oct 31 1995 All free positronic solutions may be projected out of the MO-
space using the keyword .FREEPJ

Oct 31 1995 All positronic solutions of the one-electron Fock matrix may
be projected out of the MO-space using the keyword .VEXTPJ

A.3 Installing the program

The program can be installed on a number of different types of computers. It is present as
a series of master files that are processed by the UPDATE code to handle machine-specific
features. The master files consists of three categories

dir*.u DIRAC - files

*her*.u HERMIT - files

gp*.u library - files

In addition there are .cdk - files containing machine-specific features and COMMON-
blocks:

gen.cdk - general features

dirac.cdk - features pertaining specifically to DIRAC

aba.cdk - features pertaining specifically to HERMIT
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gpg08.cdk - features pertaining specifically to library routines

Two shell scripts are available for installing the program:

lag - install one or more main modules: HERMIT , DIRAC or library files

add - add a specific master file

A.4 Running the program

Two input files are needed to run DIRAC :

• The basis file defines the basis set, nuclear configuration and symmetry.

• The menu file defines the calculation.

At the start of any calculation the basis file is processed and then various modules are
activated based on the information given in the menu file. One may therefore run a
sequence of calculations based on the same basis file. Intermediate files are kept to a
minimum. For instance, one may first run a DF-calculation which gives a set of MO-
coefficients defining the converged wave function. Population analysis may be performed
in a separate calculation and then requires only the file of coefficients in addition to the
basis file.

The basic UNIX command for running the program is

dirac.x < {menufile} > {outputfile}

The basis file must be present as MOLECULE.INP.
The various program modules have different memory requirements. Memory may be

allocated dynamically by setting an environmental variable DIRWRK which defines the
number of 8-byte words needed in the calculation, e.g.

setenv DIRWRK 30000000

means that 30 Mw of memory are to be allocated1 Default memory is specified by the
variable LWORK which may be set in the dirac.cdk - file.

A C-shell script dhf is available for automatization of calculations:

Usage: dhf [flags] file

Flags:

-incmo : Copy DFCOEF to work area

-utcmo : Save DFCOEF from work area

11 Mw = 8,000,000 bytes = 7.63 MB. 1MB = (1024)2 bytes.
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-infck : Copy DFFCK2 to work area

-utfck : Save DFFCK2 from work area

-mw mem : set memory(in megawords)

-rmwrk : remove work area after calculation

-run name : File suffix for output



226 Ch.A DIRAC : documentation

A.5 Input files

Common to both the menu file and the basis file is that any line that begins with the
hash symbol # is interpreted as a comment. This feature may be used for the insertion of
comments and in the menu file to “turn off” keywords.

A.5.1 Menufile

The menu file defines the calculation and has the general structure

*DIRAC

< keywords >

< chapter >

< keywords >

< chapter >

< keywords >

...

*END OF

Each chapter has an asterisk (*) in the initial position and generally refer to a program
module. For each chapter a set of keywords may be specified, possibly with additional
arguments. The set of chapters and keywords allows the user great flexibility in defining
the current calculation.

1. *DIRAC

(a) Job assignment

In this section the program modules to be called are defined. It is recommended
to start a new set of calculations with all modules turned off in order to check
the basis file processing.

.TITLE title line
Arguments: Title line (max. 50 characters)
Default: DIRAC: No title specified !!!

.INPTES input test: no job modules called
Default: INPTES = .FALSE.

.DHFCAL perform Dirac-Fock calculation
Default: DODHF = .FALSE.

.DHFANA analyze Dirac-Fock wave function
Default: DOANA = .FALSE.

(b) Job control
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.DIRECT - direct evaluation of two-electron integrals.
Arguments: Integers ILL,ISL,ISS
IXX = 1(on)/0(off) (XX = LL,SL or SS)
Default: ILL = ISL = ISS = 0

.ONESYS ignore two-electron part
Default: ONESYS = .FALSE.

.NSYM number of fermion ircops (one or two).
Default: NSYM = 1

.URKBAL unrestricted kinetic balance
Default: URKBAL = .FALSE.
Restricted kinetic balance. This is imposed by deleting unphysical
solutions from the free particle positronic spectrum.

.FREEPJ project out all free positronic solutions from the MO-space
Default: .FALSE.

.VEXTPJ project out all external field positronic solutions from the MO-
space
Default: .FALSE.

.SPHTRA transformation to spherical harmonics embedded in transforma-
tion to orthonormal basis; totally symmetric contributions deleted.
Arguments: Integers ISPHL,ISPHS — ISHP = 1(on)/0(off)
Default: ISPHL = 1,ISPHS = 0. Note that with ISPHL = 1
and restricted kinetic balance, the correct transformation of the
small components is automatically imposed.

.CVALUE reset the value of light
Arguments: CVAL
Default: CVAL = 137.03604D0

.PTNUC use point nucleus
Default: The nuclear charge distribution is represented by a Gaus-
sian function.

.TIMINT time integral evaluation
Default: TIMINT = .FALSE.

.OVLTOL thresholds for linear dependence in large and small components
Arguments: Real STOL(1),STOL(2)
Default: Large: STOL(1) = 1.0D-6.
Small: STOL(2) = 1.0D-8

(c) Print levels

.PRINT general print level
Arguments: Integer IPRGEN
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Default: IPRGEN = 0

.IPRONE print level for one-electron integrals
Arguments: Integer IPRONE
Default: IPRONE = 0

.IPRTWO print level for two-electron integrals
Arguments: Integer IPRTWO
Default: IPRTWO = 0

2. *READIN — Input module : Read and process menu and basis files.

.PRINT general print level in input module
Arguments: Integer IPREAD
Default: IPREAD = 0

.MAXPRI maximum number of primitive functions in a given block in basis file
Arguments: Integer MAXPRI
Default: MAXPRI = 15

3. *DHFCAL — Perform Dirac-Fock calculation.

(a) DHF – occupation

.NELECT for each fermion ircop, give number of electrons
Arguments: Integers (NELEC(I),I=1,NSYM)
Default: NELEC(1) = NELEC(2) = 0

(b) Print levels

.PRINT general print level
Arguments: Integer IPRDHF
Default: IPRDHF = 0

(c) Trial function

A DF-calculation may be initiated in three different ways:

• using MO-coefficients from a previous calculation.

• using two-electron Fock matrix from a previous calculation; this may
be thought of as starting from a converged DHF potential

• using coefficients obtained by diagonalization of the one-electron Fock ma-
trix: the bare nucleus approach.

Default is to start from MO-coefficients if the file DFCOEF is present. Otherwise
the bare nucleus approach is followed. In all three cases linear dependencies
are removed in the 0th iteration.

.TRIVEC start SCF-iteratons from vector file
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.TRIFCK start SCF-iterations from two-electron Fock matrix from previous
calculation

(d) Convergence criteria

Three different criteria for convergence may be chosen:

• the difference in total energy between two consecutive iterations

• the largest absolute difference in the total Fock matrix between two con-
secutive iterations

• the largest element of the DIIS error vector e = [F,D] (in MO-basis).

The change in total energy is approximately the square of the largest element in
the error vector or the largest change in the Fock matrix. Default is convergence
on error vector with threshold SCFCNV = 1.0D-6 . Alternatively, the iterations
will stop at the maximum number of iterations.

.MAXITR maximum number of SCF - iterations
Arguments: Integer MAXITR
Default: MAXITR = 50

.ERGCNV threshold for convergence on total energy
Arguments: Real SCFCNV

.EVCCNV converge on error vector
Arguments: Real SCFCNV

.FCKCNV converge on largest absolute change in Fock matrix
Arguments: Real SCFCNV

(e) Convergence acceleration

It is imperative to keep the number of SCF-iterations at a minimum. This may
be achieved by convergence acceleration schemes.

• Damping The simplest scheme is damping of the Fock matrix that may
remove oscillations. In iteration n + 1 the Fock matrix to be diagonalized
is:

F′ = (1 − c)Fn+1 + cFn; c−−− damping factor (A.1)

• DIIS (Direct Inversion of iterative Subspaces) may be thought of as gen-
eralized damping involving Fock matrices from many iterations. Damping
factors are obtained by solving a simple matrix equation involving the B-
matrix constructed from error vectors (approximate gradients).

In DIRAC DIIS takes precedence over damping.

.DIISTH change default threshold for initiation of DIIS, based on largest
element of error vector
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Arguments: Real DIISTH — convergence threshold for initiation
of DIIS
Default: A very large number.

.MXDIIS maximum dimension of B-matrix in DIIS module
Arguments: Real MXDIIS — maximum dimension of B-matrix
Default: MXDIIS = 15

.NODIIS do NOT perform Direct Inversion of Iterative Subspaces (DIIS)
Default: DIIS is activated.

.DAMPFC change default damping factor
Arguments: Real DAMPFC — damping factor
Default: DAMPFC = 0.25.

.NODAMP do NOT perform damping of Fock matrix
Default: Damping is activated, but DIIS takes precedence.

(f) State selection

Convergence can be improved by selection of vectors based on overlap with
vectors from a previous iteration. This method mayu also be used for conver-
gence to some excited state. If DIRAC starts on a vector set , this vector
set forms the criterium for overlap selection, otherwise the criterium are the
vectors from the first iteration. Vector selection based on vectors generated by
the bare nucleus approach are not recommended.

.OVLSEL activate overlap selection
Default: No overlap selection.

(g) Iteration speedup

The total run time may be reduced significantly by reducing the number of
integrals to be processed in each iteration:

• Screening on integrals: Thresholds may be set to eliminate integrals
below the threshold value. The threshold for LL-integrals is set in the
basis file, but this threshold may be adjusted for SL- and SS-integrals by
threshold factors:

– Threshold for LL-integrals: THRS

– Threshold for SL-integrals: THRS*THRFAC(1)

– Threshold for SS-integrals: THRS*THRFAC(2)

• Screening on density: In direct mode further reductions are obtained by
screening on the density matrix as well. This becomes even more effective
if one employs differential densities, that is

∆D = Dn+1 −Dn (A.2)
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• Neglect of integrals: The number of integrals to be processes may be
reduced even further by adding SL- and SS-integrals only at an advanced
stage in the DHF-iterations, as determined either by the number of it-
erations or by energy convergence. The latter takes precedence over the
former.

.THRFAC adjust integral thresholds for SL- and SS-integrals.
Arguments: Reals THRFAC(1),THRFAC(2)
Default: THRFAC(1) = THRFAC(2) = 1

.DNSTHR threshold for screening on density matrix
Arguments: DNSTHR
Default: Real DNSTHR = 1.0D-10

.CEDIFF separate density screening of Coulomb and exchange contributions
Default: .FALSE.

.NODSCF do not perform SCF - iterations with differential density matrix
Default: use differential density matrix in direct SCF.

.CNVINT set threshold for convergence before adding SL- and SS-integrals
to SCF-iterations.
Arguments: Reals CNVINT(1)(SL),CNVINT(2)(SS)
Default: Very large numbers.

.ITRINT set number of iterations before adding SL- and SS-integrals to
SCF-iterations.
Arguments: Integers ITRINT(1) (SL),ITRINT(2)(SS)
Default: ITRINT(1) = ITRINT(2) = 1

.NOSMLV turn off small component nuclear attraction integrals; this turns
off the spin-orbit interaction from the field of nuclei. If SL two-
electron integrals are turned off as well, all spin-orbit interaction
is cancelled.
Default: Integrals are included.

(h) Output control

.VECPRI separate control of printing of large and small components
Arguments: Integers IPRVEC(1)(large),IPRVEC(2)(small).
Default: No vectors printed.

.EIGPRI control printing of electron and positron solutions
Arguments: Integers IPREIG(1) (electron),IPREIG(2)(positron)
Default: Electronic eigenvalues printed.

.SPINOR for each fermion ircop, give number of spinors to print.
Default: the occupied electronic solutions.
Arguments: Integers (NSPI(I),I=1,NSYM)
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.OFFSET for each fermion ircop, offset for start address for vectors to print.
Arguments: Integers (ISPI(I),I=1,NSYM)
Default: 0 , meaning the first electron solution. (Positron solu-
tions may be printed by giving negative offsets).

4. *DHFANA — Analyze Dirac-Fock wave function. Mulliken population analysis is
performed in AO-basis. The analysis is based on the concept of labels. Each basis
function is labeled by its functional type and center. The labels are given in output.
A set of primitive labels may be collected to group labels as specified by the user.

.PRINT general print level
Arguments: Integer IPRANA
Default: IPRANA = 0

.MULPOP give Mulliken gross populations
Default: DOMULP = .FALSE.

.NETPOP give Mulliken gross and net/overlap populations
Default: DONETP = .FALSE.

.LABDEF defined labels for use in Mulliken population analysis
Arguments: Integer NCLAB - number of labels to define

DO I = 1,NCLAB

READ(LUCMD,’(A12,I5)’) CLABEL(I),NGRPS

READ(LUCMD,*) (IBUF(J),J=1,NGRPS)

DO J = 1,NGRPS

ICLAB(IBUF(J)) = I

ENDDO

ENDDO

.ADDSML use default labels for small components
Default is to gather all small component functions belonging to a given
center.

.SPINOR for each fermion ircop, give number of spinors to analyze.
Default: the occupied electronic solutions.
Arguments: Integers (NSPI(I),I=1,NSYM)

.OFFSET for each fermion ircop, offset for start address for vectors to analyze.
Arguments: Integers (ISPI(I),I=1,NSYM)
Default:0 , meaning the first electron solution. (Positron solutions may
be analyzed by giving negative offsets).
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A.5.2 Basisfile

The basis file defines the present basis set, molecular geometry and the symmetry of the
system. A summary of the basis file structure is given in Tab. A.5.2.

Card 1 : INTGRL — a keyword that identifies the file.

Card 2 : TITLE(1),TITLE(2) (A72/A72) Two title lines.

Card 3 : CRT,NONTYP,NSYMOP,(SYMOP(I),I=1,3),THRS
(BN,A1,I4,I5,3A3,1X,D10.2)

CRT - must be set to ’C’ to indicate that Cartesian Gaussians are to be used.

NONTYP - specify the number of atomic types

NSYMOP - specify the number of generators of the symmetry group

SYMOP(I) - Symmetry is restricted to restricted to the binary groups, that is D2h

and subgroups, which means that a symmetry operation acting on the main
axes (x,y,z) will at most reverse their direction. A group generator is there-
fore identified by a 3-character string that specifies the axes reversed under its
operation. Examples are given for the eight binary groups in Tab. A.5.2.

THRS (D10.2) Threshold for LL-integrals. Separate thresholds for SL- and SS-
integrals may be specified in the menu file.

• For each atomic type:

Card 3.1 Q,NONT(I),QEXP (BN,F10.0,I5,F20.5)

Q - nuclear charge

NONT(I) - number of symmetry independent centers

QEXP Gaussian exponent for nuclear charge distribution (if zero, then default
is used).

• For each symmetry independent center:

Card 3.1.1 NAMN(NUCIND),[CORD(J,NUCIND), J = 1,3] (BN,A4,3F20.0)

NAMN - name of nuclear center

CORD(J) - x-,y-and z-coordinate of nuclear center

Card 3.2 BSET,IQM(I),[JCO(J,I),J=1,IQM(I)] (BN,A5,12I5)

BSET - set equal to LARGE to indicate that large component basis is defined
explicitly

IQM - highest angular quantum number L plus one, e.g. s(1),p(2) ....

JCO - number of blocks for each L-value
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• For each block read exponents and coefficients:

In the present version only uncontracted basis sets are used. The large compo-
nent basis is given explicitly, whereas the small component basis is generated
by the kinetic balance prescription. If contracted basis sets are to be used, the
two components must each be specified explicitly. This will be possible in the
next version of DIRAC .

Card 3.2.1 FRMT,NUC,NRC,ISGEN (BN,A,I4,2I5)

FRMT - format for reading of exponents and coefficients

H - high precision. For each exponent the first line is read in for-
mat (4F20.8) and addtional lines containing only coefficients
are read in format(20X,3F20.8).

F - free format

(blank) - default precision. For each exponent the first line is read in
format (8F10.4) and addtional lines containing only coefficients
are read in format(10X,7F10.4).

NUC - number of primitve exponents

NRC - number of contracted functions (set equal to zero for uncontracted
basis)

ISGEN - specification of how to generate small component functions by
kinetic balance:

• ISGEN = 0: No small component functions generated

• ISGEN = 1: Small component functions generated upwards, e.g.
p→ d

• ISGEN = 2: Small component functions generated downwards, e.g.
p→ s

• ISGEN = 3: Small component functions generated both upwards
and downwards, e.g. p→ s, d

Card 3.2.2 [ALPHA(K),[CPRIM(K,L),L=1,NRC],K=1,NUC]
Read exponents and coefficients. See card 3.2.1.

Card 4 FINISH - keyword to indicate end of file
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Table A.1: Example definitions of the binary groups (- indicates blank character)
Group NSYMOP SYMOP Operations

D2h 3 --Z--Y--X σxy, σxz, σyz

D2 2 XY--YZ--- C2
z , C

2
x

C2v 2 -Y-X----- σxz, σyz

C2h 2 --ZXYZ--- σxy, i
C2 1 XY------- C2

z

Cs 1 --Z------ σxy

Ci 1 XYZ------ i
C1 0 ---------

Table A.2: Summary of basis file structure
Card Input Format

1: KEYWRD = ’INTGRL’ (A6)
2a: TITLE(1) (A72)
2b: TITLE(2) (A72)
3: CRT,NONTYP,NSYMOP,[SYMOP(I),I=1,3],THRS (BN,A1,I4,I5,3A3,1X,D10.2)

• For each atomic type: I = 1,NONTYP
3.1: Q,NONT(I),QEXP (BN,F10.0,I5,F20.5)

• For each symmetry independent center: J = 1,NONT(I)
3.1.1: NAMN(NUCIND),[CORD(J,NUCIND), J = 1,3] (BN,A4,3F20.0)

3.2: BSET,IQM(I),[JCO(J,I),J=1,IQM(I)] (BN,A5,12I5)

• For each block: J = 1,IQM(I)
3.2.1: FRMT,NUC,NRC,ISGEN (BN,A,I4,2I5)
3.2.2: [ALPHA(K),[CPRIM(K,L),L=1,NRC],K=1,NUC] see text

4: KEYWRD = ’FINISH’ (A6)
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A.6 Output files

A formatted output file is conneted to DIRAC through standard output. The user may
modify the output by setting various print levels in the menu file. DIRAC willl in addition
produce a formatted file DFCYCL containing a summary of the SCF process. In addition
to the formatted DIRAC produces a number of unformatted files. They are

• Control files

DFDIIS information about DIIS process

DFEVEC direct access file with DIIS error vector

• Coefficients

DFCOEF MO-coefficients from current SCF-iteration

DFCMOS coefficients from current SCF-iteration in MO-basis

• One-electron integrals and matrices

DF1INT one-electron integrals contributing to one-electron Fock matrix

DFOVLP overlap matrices

DFTMAT MO-transformation matrix

DFFCK1 One-electron Fock matrix (in QO basis)

• Two-electron integrals and matrices

For each integral class (XX = LL,SL,SS) in conventional mode:

DFXXSA sorted singlet integrals (both Coulomb and exchange contributions)

DFXXSB sorted singlet integrals (both Coulomb and exchange contributions)

DFXXTA sorted triplet integrals (only exchange contributions)

DFXXTB sorted triplet integrals (only exchange contributions)

DFTWXX scratch file of unsorted integrals from HERMIT

DFXXTB scratch file used in sorting process

In addition:

DFFCK2 two-electron Fock matrix in QO-basis
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A.7 Restart

DIRAC has robust restart facilities:

• When calculating a new point on a potential surface, DIRAC can start from
the coefficients (the file DFCOEF) , from the two-electron Fock matrix in AO-basis
(the file DFFCK2) or from solutions of the one-electron Fock matrix (bare nucleus
approximation). Default is to start from coefficients if the unformatted vector file
DFCOEF is present; otherwise DIRAC uses the bare nucleus approxiamtion. Restart
on Fock matrix may be specified by the keyword .TRIFCK.

• When restarting on the same point on the potential surface, DIRAC needs the
formatted file typ DFCYCL to update status of the SCF process. The full SCF
summary will be provided at the end of the current iterations, so that the output
file from the previous SCF iterations is generally not needed. In addition DIRAC

needs the coefficients (file DFCOEF). To restart on DIIS, DIRAC needs the following
files: DFDIIS, DFCMOS, DFFOCK and DFEVEC. If DIIS is not requested, DIRAC

may restart on damping if the file DFFOCK is present.
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A.8 Test example

We consider the calculation of the F2- molecule as a test case. Notice the use of the hash
symbol #}to insert comments and turn off keywords.

A.8.1 Basis file

INTGRL

Fluorine molecule. Experimental bond length: 1.4178 A

Basis: F9s5p1d

C 1 3X Y Z A .10D-15

# D2h - symmetry is specified.

9.0 1

F1 .000000000000000 .000000000000000 .70890000000000 *

LARGE 3 1 1 1

9 0 3

9994.7900

1506.0300

350.26900

# Comments may be inserted anywhere

104.05300

34.843200

12.216400

4.3688000

1.2078000

.3634000

5 0 3

44.355500

10.082000

2.9959000

.9383000

.2733000

1 0 3

1.6200000

FINISH
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A.8.2 Menu file

*DIRAC

.TITLE

Fluorine molecule. Restr.kin.bal. Sph.tr.

.DIRECT

1 1 1

.DHFCAL

.DHFANA

.NSYM

2

#.URKBAL

*READIN

*DHFCAL

.NELECT

10 8

.PRINT

2

.DODAMP

0.25

.DODIIS

5000.0

# The following three keywords specify that the large component

# coefficients for all spinors are to be printed. In OFFSET and

# SPINOR very large values are given. These will be modified in the

# program down to maximum possible values, that is printing all

# spinors.

.OFFSET

-100 -100

.SPINOR

100 100

.VECPRI

1 0

.EIGPRI

1 1

*DHFANA

.MULPOP

*END OF
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Appendix B

Reduction of the Breit term to

non-relativistic form

We consider the Breit interaction

ĝBreit = −
{

α1 · α2

2r12
+

(α1 · r12) (α2 · r12)

2r312

}

(B.1)

It can be reformulated to [168]

ĝBreit = ĝGaunt + ĝgauge (B.2)

The first term is then the Gaunt-term

ĝGaunt = −α1 · α2

r12
(B.3)

and the second term is a gauge-dependent term

ĝgauge = −(α1 · ∇1) (α2 · ∇2) r12
2

(B.4)

where ∇1 and ∇2 act only on r12 and not on the wave function. We consider the Foldy-
Wouthuysen transformation of the Breit operator to order (Zα)2. In particular we are
interested in the separate contributions of the Gaunt and the gauge-dependent term. This
requires the evaluation of the anticommutator expression [40]

1

4m2c2

[

(α2 · p2) ,
[

(α1 · p2) , ĝ
Breit

]

+

]

+
(B.5)

which is quite a laborious task. Let us first outline the general strategy for the evaluation
of the commutator expression. The commutator we want to evaluate may be written as

[

α2ip2i, [α1jp1j, α1kα2mMkm]+
]

+
(B.6)
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where Mkm is a function of r12 and symmetric with respect to particle exchange

M = M(r12) = M(−r12); r12 = r1 − r2 (B.7)

The commutator consists of a space part, represented by momentum operators and coor-
dinates, and a spin part, represented by Dirac α-matrices. The latter go into Pauli spin
matrices in the two-component form. The spin part is best handled using anticommutator
relations, in particular the relation

[αi, αj ]+ = 2δij (B.8)

whereas the space part is best handled using commutator relations. We will therefore rear-
range the commutator expression to a form that alows a more straightforward evaluation.
We then employ the commutator relations

[AB,C] = A [B,C] + [A,C] (a)

[A,BC] = [A,B]C + B [A,C] (b)

[AB,C]+ = [A,C]+B + A [B,C] (c)

[A,BC]+ = [A,B]+ C − B [A,C] (d)

(B.9)

Consider first the inner anticommutator. Using Eq.B.9c it can be expanded as

[α1jp1j, α1kα2mMkm]+ = [α1j , α1kα2mMkm]+ p1j + α1j [p1j, α1kα2mMkm] (B.10)

Using Eq.B.9d the first term is rearranged to

[α1j , α1kα2mMkm]+ p1j = [α1j , α1k]+ α2mMkmp1j − α1k [α1j , α2mMkm] p1j

= 2δjkα2mMkmp1j

(B.11)

and using Eq.B.9b the second term becomes

α1j [p1j , α1kα2mMkm] = α1j [p1j , α1kα2m]Mkm + α1jα1kα2m [p1j ,Mkm]

= α1jα1kα2m [p1j ,Mkm]

(B.12)

The two surviving terms are processed through the outer anticommutator using the same
techniques and finally gives four terms

[

α2ip2i, [α1jp1j, α1kα2mMkm]+
]

+
= 4Mijp1ip2j (a)

+ 2α2iα2m [p2i,Mjm] p1j (b)

+ 2α1jα1k [p1j,Mki] p2i (c)

+ α2iα2mα1jα1k [p2i, [p1j,Mkm]] (d)

(B.13)
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The final term can be simplified by noting that

[p2i, [p1j ,Mkm]] = (p2ip1jMkm) (B.14)

where the parenthesis indicate that p2ip1j act on Mkm and not on the wave function.
Products of α - terms are handled by the relation

αiαj = δij + iεijkαk (B.15)

Consider the Gaunt term. We make the identification

Mkm = −δkmr
−1
12 (B.16)

which means that we need the relations

[

p1i, r
−1
12

]

= ir−3
12 r12i

[

p2i, r
−1
12

]

= −ir−3
12 r12i

p2ip1jr
−1
12 = 3r12ir12jr

−5
12 − (4π/3)δ(r12)δij − δijr

−3
12

(B.17)

The latter relation may be compared to Eq.(2.96) in Moss [40]. The contribution from the
Gaunt-term to the Breit-Pauli Hamiltonian is therefore

ĝGaunt : − 1

m2c2r12
(p1 · p2) (a)

− 1

2m2c2r312
[α2 · (r12 × p1) + (r12 · ∇1)] (b)

+
1

2m2c2r312
[α1 · (r12 × p2) + (r12 · ∇2)] (c)

− 1

4m2c2
(α2 · p2) (α1 · p1) (α1 · α2) r

−1
12 (d)

(B.18)

Further processing and replacing α with σ gives

ĝGaunt : − 1

m2c2r12
(p1 · p2) (a)

+
1

2m2c2r312
[σ1 · (r12 × p2) − σ2 · (r12 × p1)] (b)

+
1

4m2c2
[

r−3
12 (σ1 · σ2) − 3r−5

12 (σ1 · r12) (σ2 · r12) − (8π/3) (σ1 · σ2) δ(r12)
]

(c)

− 1

2m2c2r312
(r12 · ∇12) (d)

− 1

m2c2
πδ(r12) (e)
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(B.19)

For gauge-dependent term we find

Mkm = −1

2
∇1k∇2mr12 (B.20)

where we again note ∇1 and ∇2 act only on r12 and not on the wave function. The
contribution from the gauge-dependent term to the Breit-Pauli Hamiltonian is therefore

ĝgauge : − 1

2m2c2
∇2i∇1jr12p1jp2i (a)

+
1

2m2c2r312
(r12 · ∇1) (b)

− 1

2m2c2r312
(r12 · ∇2) (c)

+
1

8m2c2
(α2 · ∇2) (α2 · ∇2) (α1 · ∇1) (α1 · ∇1) r12 (d)

(B.21)

The final term may be collapsed into

1

8m2c2
∇2

1∇2
2r12 (B.22)

Further processing and replacing α with σ gives

ĝgauge : − 1

2m2c2
(p1 · ∇1) (p2 · ∇2) r12 (a)

+
1

2m2c2r312
(r12 · ∇12) (b)

+
1

m2c2
πδ(r12) (c)

(B.23)

The reduced Breit term is obtained by combining Eq.(B.19) and Eq.(B.23):

ĝBreit :
1

m2c2

[

r−1
12 (p1 · p2) +

1

2
(p1 · ∇1) (p2 · ∇2) r12

]

(a)

+
1

2m2c2r312
[σ1 · (r12 × p2) − σ2 · (r12 × p1)] (b)

+
1

4m2c2
[

r−3
12 (σ1 · σ2) − 3r−5

12 (σ1 · r12) (σ2 · r12) − (8π/3) (σ1 · σ2) δ(r12)
]

(c)

(B.24)



245

The first term in Eq.(B.24) is the orbit-orbit interaction in the form given by Huang [146],
where ∇1 and ∇2 operate only on r12 and not on the wave function. It is straightforwardly
rearranged to its more familiar form

1

2m2c2
[

r−1
12 (p1 · p2) + r−3

12 (p1 · r12) (p2 · r12)
]

(B.25)

Note that the two forms of the orbit-orbit interaction corresponds to the two forms of the
Breit term.
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Appendix C

Symmetry in relativistic systems

C.1 General overview

Theses notes are based on two lectures held at the University of Tromsø

December 1994.

The full symmetry group of a dynamical system consists of all operators that commute
with its Hamiltonian. Symmetry operations are unitary or antiunitary. Here we will only
consider unitary symmetry operations acting on spatial and spin coordinates of the system.
The non-relativistic Hamiltonian has the general form

Ĥ = T̂ + V̂ (C.1)

The kinetic energy operator T̂ is totally symmetric under any symmetry operation, whereas
the potential energy operator V̂ determines the symmetry of the system. In molecular
systems the translation of the center of mass is separated out, so that our discussion of
symmetry will be limited to point group operations that keep at least one point fixed. We
may write a general point group symmetry operator as

Ĝ = Ĝr (φr,nr, pr) Ĝ
η (φη,nη, pη) ; pi = 0, 1 (C.2)

where Ĝr (φr,nr, pr) and Ĝη (φη,nη , pη) act on spatial r and spin η coordinates, respec-
tively. They have the form

Ĝ (φ,n, p) = îpR̂ (φ,n) , (p = 0, 1) (C.3)

where î represent inversion and R̂ (φ,n) is a rotation φ about an axis given by the unit
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vector n. Special cases are

Rotation: Ĝ (φ,n, 0)

Inversion: Ĝ (0,n, 1) (arbitrary n)

Reflection: Ĝ (π,n, 1)

Improper rotation: Ĝ (φ,n, 1)

(C.4)

The action of a symmetry operation on a function is determined by its action on the
coordinates

Ĝψ(Ĝ(r, η)) = ψ(r, η) ⇒ Ĝψ(r, η) = ψ(Ĝ−1(r, η)) (C.5)

The non-relativistic Hamiltonian is spin-free, which allows a separate handling of spin
and spatial symmetry. The spin may be integrated out of equations and one may form
spin-free functions adapted to point group symmetry. In the relativistic domain the spin
and spatial degrees of freedom are coupled and no such separation is possible. In a molec-
ular system with an even(odd) number of electrons, the eigenfunctions of the electronic
Hamiltonian have integral(half-integral) spin and may be denoted boson (fermion) func-
tions. A striking difference between boson and fermion functions, is that the latter type
functions change sign under a rotation 2π about an arbitrary axis, which has in fact
been verified experimentally in both neutron and NMR interfermometry experiments. For
boson functions a rotation 2π correspond to the identity operation.

The symmetry of fermion functions is usually handled using double groups. Double
groups are introduced by adding an extra element E representing a rotation 2π about
an arbitrary axis and therefore commuting with all symmetry operations. By this ’trick’
it is possible to recover all the results of standard group theory. In these notes we shall
derive explicit representations of the various point group operations in spatial and spin
coordinates. We shall see that the resulting representations for rotations are completely
congruent with what is obtained from double group theory. For improper rotations in-
volving, there is a decisive difference that requires further exploration.

C.2 Notation

In what follows we employ the following notation

• the Einsteins summation convention: a repeated index is taken to mean summation
over all possible values of the index

• the three-dimensional Levi-Cevita symbol

εijk =







+1 if ijk is an even permutation of 1,2,3
−1 if ijk is an odd permutation of 1,2,3

0 for all other cases
(C.6)
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We note the relation εijkεilm = δjlδkm − δjmδkl

Using the above notation scalar and vectors products may be expressed as

A ·B = AiBi; A ×B = eiεijkAjBk (C.7)

where ei are unit vectors along the main coordinate axes. Alternativelym, a vector product
can be written as a 3 × 3 determinant

A ×B =

∣

∣

∣

∣

∣

∣

e1 e2 e3

A1 A2 A3

B1 B2 B3

∣

∣

∣

∣

∣

∣

(C.8)

from which we see that a general 3 × 3 determinant can be expressed in terms of the
Levi-Cevita symbol

det (A) =

∣

∣

∣

∣

∣

∣

A11 A12 A13

A21 A22 A23

A31 A32 A33

∣

∣

∣

∣

∣

∣

= εijkA1iA2jA3k (C.9)

We may generalize to

εijkAliAmjAnk = εlmn det (A) (C.10)

C.3 Rotations

C.3.1 Rotation about main axes

A rotation ω of a function about the z axis correspond to a rotation −ω of coordinates:

x′ = r sin θ cos (φ− ω) = r sin θ cosφ cosω + r sin θ sinφ sinω
= x cosω + y sinω

y′ = r sin θ sin (φ− ω) = −r sin θ cosφ sinω + r sin θ sinφ cosω
= −x sinω + y cosω

z′ = r cos θ
= z

(C.11)

Consider an infinitesimal rotation dω about the z-axis. We use the relations

sin dω ≈ dω , cos dω ≈ 1 (C.12)

which gives

dr
′

=
(

x′ − x, y′ − y, z′ − z
)

= (y,−x, 0) dω (C.13)
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The resulting function may be written as a first order Taylor expansion :

ψ(r
′

) ≈ ψ(r) + dr · ∇ψ(r) = [1 + dω(y
d

dx
− x

d

dy
)]ψ(r) = [1 − idωl̂z]ψ(r) (C.14)

From the equivalence of the main axes we conclude

1 − dωl̂x infinitesimal rotation about the x-axis

1 − dωl̂y infinitesimal rotation about the y-axis

1 − dωl̂z infinitesimal rotation about the z-axis

(C.15)

C.3.2 Rotation about arbitrary axis

We consider an infinitesimal rotation dφ about an arbitrary axis identified by the unit
vector n. We employ the notation R̂ (dφ,n) to describe this rotation. By geometric
construction we find

dr = −dφ (n× r) (C.16)

Insertion in a first order Taylor expansion of the rotated function gives

ψ(r
′

) ≈ ψ(r)+dr ·∇ψ(r) = ψ(r)−dφ (n× r) ·∇ψ(r) = [1 − dφn · (r×∇)]ψ(r) (C.17)

This allows the identification

R̂ (dφ,n) = 1 − idφ
(

n · l̂
)

(C.18)

where l̂ is the angular momentum operator (in atomic units)

l̂ = r̂× p̂ = −i (r×∇) (C.19)

The operator for a finite rotation is generated from infinitesimal rotations

R̂ (φ,n) = lim
k→∞

[

R̂

(

φ

k
,n

)]k

= lim
k→∞

[

1 − i
φ

k

(

n · l̂
)

]k

= e−i(n·̂l) (C.20)

C.3.3 Angular momentum — a short repetition

In the previous section we have seen that the operators for angular momentum are gener-
ators for infinitesimal rotations about the main axes. We therefore give a short summary
of angular momentum theory.
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Genral angular momentum operators are defined from the commutation relations
[

ĵx, ĵy

]

= iĵz ,
[

ĵy, ĵz

]

= iĵx ,
[

ĵz, ĵx

]

= iĵy (C.21)

The commutation relation may be written in a more compact form by

ĵ × ĵ = îj (C.22)

We denote eigenfunctions of angular momentum by ψjm. The following relations apply:

ĵ2ψjm = j(j + 1)ψjm

ĵzψjm = mψjm

(C.23)

We introduce ladder operators ĵ+ and ĵ−

ĵ± = ĵx ± iĵy (C.24)

whose operation on

ĵ±ψjm =
√

(j(j + 1) −m(m± 1))ψj,m±1 (C.25)

For later use we note the relations:

jx =
1

2
(j+ + J−) , jy = −i1

2
(j+ − j−) (C.26)

C.3.4 Matrix representations of rotation operators

The product of two rotations is a rotation. The set of rotation operators

R̂ (φ,n) = e−iφ(n·̂j) (C.27)

form a continuous group, the full rotation group R3. Irreducible representations of the full
rotation group are labeled by j and are (2j+1)-fold degenerate. Matrix representations of
ĵ and R̂ (φ,n) may be constructed in a basis {ψjm} for any j. In this section we consider
matrix representations of j = 1

2 og j = 1.

Case 1: j = 1
2

Basis for j = 1
2 are the spin functions α and β and we set j = s. We have the relations

szα = 1
2α szβ = −1

2β

s+α = 0 s+β = α

s−α = β s−β = 0

(C.28)
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from which we obtain the matrix representations

sz =
1

2

[

1 0
0 −1

]

, s+ =
1

2

[

0 1
0 0

]

, s− =
1

2

[

0 0
1 0

]

(C.29)

Using (C.26) we obtain

sx =
1

2

[

0 1
1 0

]

, sy =
1

2

[

0 −i
i 0

]

(C.30)

In sum we have

s =
1

2
σ (C.31)

where σ are Pauli spin matrices. We note the property

σiσj = δij + iεijkσk =

{

1 , i = j
iεijkσk , i 6= j

(C.32)

Important relations are

(σ ·A) (σ ·B) = A ·B + iσ · (A×B) (C.33)

and

(σ · A) (σ · B) (σ ·C)
= iA · (B ×C) + (σ ·A) (B ·C) − (σ · B) (A · C) + (σ · C) (A · B)

(C.34)

Matrix representaitons of the rotation operators for j = 1
2 is obtained from

R̂
1
2 (φ,n) = e−iφ(n·ŝ) → R

1
2 (φ,n) = e−i 1

2
φ(n·σ) =

∑

m=0

(−i)m

(

1
2φ
)m

m!
(n · σ)m (C.35)

Considerable simplification is obtained by noting that

(n · σ)2 = njσjnkσk = nini + iεijkσinjnk = 1 + iσ(n × n) = 1 (C.36)

which implies

(n · σ)2m = 1 , (n · σ)2m+1 = (n · σ) (C.37)

We may therefore write

R
1
2 (φ,n) =

∑

n=0(−i)n ( 1
2
φ)

n

n! (n · σ)n

=
∑

n=0(−i)2n ( 1
2
φ)

2n

(2n)! (n · σ)2n +
∑

n=0(−i)(2n+1) (
1
2
φ)

(2n+1)

(2n+1)! (n · σ)(2n+1)

=
∑

n=0(−1)2n ( 1
2
φ)

2n

(2n)! − i (n · σ)
∑

n=0(−1)2n ( 1
2
φ)

(2n+1)

(2n+1)!

= cos 1
2φ− i (n · σ) sin 1

2φ

(C.38)
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Case 2: j = 1

As basis for j = 1 we may use the spherical harmonic functions

Y1,1 = −
(

3
8π
)

sin θeiφ ∝ − 1√
2
(x+ iy)

Y1,0 =
(

3
4π
)

cosφ ∝ z

Y1,−1 =
(

3
8π
)

sin θe−iφ ∝ 1√
2

(x− iy)

(C.39)

In the basis of these functions the angular momentum operator is represented by

lx =
1√
2





0 1 0
1 0 1
0 1 0



 , ly =
1√
2





0 −i 0
i 0 −i
0 i 0



 , lz =
1√
2





1 0 0
0 0 0
0 0 −1



 (C.40)

We shall, however, use a basis of Cartesian coordinates (q1 = x,q2 = y og q3 = z) to
generate representations of the angular momentum and rotation operators. som basis.
The angular momentum operators may be written as

l̂ = −i (r×∇) = −ieiεijkqj
δ

δqk
(C.41)

so that elements of representation matrices in the Cartesian basis is given by
〈

qj

∣

∣

∣̂
l
∣

∣

∣
qk

〉

= −ieiεilm

〈

qj

∣

∣

∣
ql

δ
δqm

∣

∣

∣
qk

〉

= −ieiεilmδkm 〈qj | ql〉

= −ieiεilmδkmδjlw = −ieiεijk

(C.42)

The full representation matrices can now be written as

τx =





0 0 0
0 0 −i
0 i 0



 , τy =





0 0 i
0 0 0

−i 0 0



 , τz =





0 −i 0
i 0 0
0 0 0



 (C.43)

In the coordinate basis the rotation operators are given by

R̂ (φ,n) = e−iφ(n·̂j) → R1 (φ,n) = e−iφ(n·τ ) =
∑

m=0

(−i)m (φ)m

m!
(n · τ )m (C.44)

In order to obtain a matrix representation of R̂1 we use the relations

(n · τ )jk = −iniεijk
(n · τ )2jm = −ninlεijkεlkm = −ninl (δimδjl − δilδjm)

= −njnm + niniδjm = δjm − njnm

(n · τ )3lm = −inkεklj (δjm − njnm) = −inkεklm + inknjnmεklj

= −inkεklm = (n · τ )lm

(C.45)
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We may conclude

(n · τ )2m = (n · τ )2 = I − n ⊗ n , (n · τ )(2m+1) = (n · τ ) (C.46)

Note that the relation (n ·τ )3 = (n ·τ ) does not imply (n ·τ )2 = 1 sonce the matrix (n ·τ )
is singular. We now write

R1 (φ,n) =
∑

n=0(−i)n (φ)n

n! (n · τ )n

= 1 +
∑

n=1(−i)2n (φ)2n

(2n)! (n · τ )2n +
∑

n=0(−i)(2n+1) (φ)(2n+1)

(2n+1)! (n · τ )(2n+1)

= 1 + (n · τ )2
∑

n=1(−1)2 (φ)2n

(2n)! + i (n · τ )
∑

n=0(−1)2n ( 1
2
φ)

(2n+1)

(2n+1)!

= 1 + (1 − cosφ)(n · τ )2 + i (n · τ ) sinφ

(C.47)

Using the trigonometric identities

cos2 1
2φ+ sin2 1

2φ = 1
cos2 1

2φ− sin2 1
2φ = cosφ

(C.48)

this is simplified to

R1 (φ,n) = 1 + i (n · τ ) sinφ− 2(n · τ )2 sin2 1

2
φ (C.49)

C.3.5 Homomorphism between SO(3) and SU(2)

Consider the transformation of the Pauli spin matrices under the rotation operators

R̂ (φ,n) σjR̂
† (φ,n) = R̂ (φ,n) σjR̂ (−φ,n) = σiAij (φ,n) (C.50)

This is best done by considering the transformation

R̂ (φ,n) (σ · m) R̂ (−φ,n)

=
[

cos 1
2φ− i (σ · n) sin 1

2φ
]

(σ ·m)
[

cos 1
2φ+ i (σ · n) sin 1

2φ
]

= (σ ·m) cos2 1
2φ+ i [(σ ·m) , (σ · n)] cos 1

2φ sin 1
2φ+ (σ · n) (σ ·m) (σ · n) sin2 1

2φ

= (σ ·m) cos2 1
2φ+ σ · (n ×m) sinφ+ [2 (σ · n) (m · n) − (σ · m)] sin2 1

2φ

= (σ ·m) + σ · (n×m) sinφ+ [(σ · n) (m · n) − (σ ·m)] 2 sin2 1
2φ

(C.51)
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Setting m = ekδjk the transformation of individual σj can be singled out. After reindex-
ation we find

Ajk (φ,n) = σjδjk + σjniεijk + σj (njnk − δjk) 2 sin2 1

2
φ (C.52)

Comparison with (C.49) shows

Ajk (φ,n) = Rjk (φ,n) (C.53)

It can be shown that the unitary transformation matrices R
1
2 (φ,n) have determinant

1 and form the special unitary group SU(2), whereas the matrices R1 (φ,n) form the
group SO(3) of orthogonal matrices with determinant 1. The transformation of Pauli spin
matrices under elements of SU(2) provide a mapping of SU(2) into SO(3). The mapping
is straighforwardly shown to be a homomorphism, but it is not single-valued since we have

R
1
2 ((φ+ 2π) ,n) = −R

1
2 (φ,n) (C.54)

whereas

R1 ((φ+ 2π) ,n) = R1 (φ,n) (C.55)

We see that rotations represented by R1 (φ,n) have periodicity 2π, whereas rotations

represented by R
1
2 (φ,n) have periodicity 4π. This is of consequence when we consider

irreducible representations.

C.3.6 Direct product basis

The spin functions α and β form a basis for rotations j = 1
2 . A basis for j = 1 (and j = 0)

in terms of spin functions is generated by forming the direct product

[

α
β

]

⊗
[

α
β

]

=









αα
αβ
βα
ββ









(C.56)

The resulting functions are however, not all eigenfunctions of ĵ og ĵz, but this can be
corrected by the transformation











1 0 0 0
0 1√

2
1√
2

0

0 0 0 1
0 1√

2
− 1√

2
0



















αα
αβ
βα
ββ









=











αα
1√
2
(αβ + βα)

ββ
1√
2
(αβ − βα)











=









|1, 1〉
|1, 0〉
|1,−1〉
|0, 0〉









(C.57)
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This gives the three components of a triplet in addition to a singlet function, which is
what is expected from the coupling of two spins. We may construct a spin analogue to
the Cartesian basis(C.39) as well by the transformation

1√
2









−1 0 0 1
i 0 0 i
0 1 1 0
0 1 −1 0

















αα
αβ
βα
ββ









=











− 1√
2

(αα− ββ)
i√
2

(αα+ ββ)
1√
2

(αβ + βα)
1√
2

(αβ − βα)











(C.58)

We may form corresponding direct products of the symmetry elements, e.g. a rotation φ
about the z -axis:

[

e−i 1
2
φ 0

0 ei
1
2
φ

]

⊗
[

e−i 1
2
φ 0

0 ei
1
2
φ

]

=









e−iφ 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ









(C.59)

By transforming to the coordinate (Cartesian) basis (C.58) we obtain as expected









cosφ sinφ 0 0
− sinφ cosφ 0 0

0 0 1 0
0 0 0 1









(C.60)

C.4 Inversion

The properties of a vector under inversion allows a classification of vectors:

îr =

{

−r (polar) vector
r axial vector (pseuodvector)

(C.61)

An example of a pseudo vector is the angular momentum vector. Correspondingly scalars
can be classified as scalar or pseudo scalars.

îa =

{

a scalar
a pseudoscalar

(C.62)

The inversion operator î commute with all rotations. This is straightforwardly seen
from the effect of rotation and inversion on the coordinates:

R̂ (φ,n) îqi = R̂ (φ,n) (−qi) = −qjAji (φ,n) = î (qjAji (φ,n)) = îR̂ (φ,n) qi (C.63)
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From the above relation it becomes clear that the representation matrix for inversion in
coordinate basis is

ir =





−1 0 0
0 −1 0
0 0 −1



 (C.64)

which is an ortogonal matrix with determinant -1. From the form of this matrix we may
deduce the representation matrix for inversion in the basis of spin functions α and β:

[

−i 0
0 −i

]

⊗
[

−i 0
0 −i

]

=









−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1









(C.65)

We have set the scalar component equal to −1 corresponding to a pseudo scalar. The 4×4
inversion matrix is invariant under transformation to coordinate or spherical harmonic
basis.

Note that the representation matrix for inversion in spin basis are of order four:

i = −iI2, i2 = −I2, i3 = iI2, i4 = I2 (C.66)

C.5 Spatial symmetry in relativistic systems

The spin operation may be chosen freely since the non-relativistic Hamiltonian is spin
free. We next consider a relativistic system and indicate this approxiamtely by adding the
spin-orbnit operator Ĥso

Ĥso = cσ · (∇V × p) (C.67)

We consider the transformation of Ĥso under a general symmetry operation k̂i(C.2):

k̂rcσiεijk
δV
δqj
pkk̂

†
r

= cĜη
(

θη,mη, p
′
η

)

σiĜ
η
(

−θη,mη , p
′
η

)

εijkĜ (φr,nr, pr)
δ

δqj
Ĝ (−φr,nr, pr) V

Ĝ (φr,nr, pr) pkĜ (−φr,nr, pr)

= cσlεijk
δV
δqm

pnAli (θ,m)Amj (φr,nr)Ank (φr,nr)

(C.68)

where we have used that the potential V is totally symmetric under the point group. We
see that Ĥso is not totally symmetric under k̂i. However, by inserting θ = φr and m = nr
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we obtain

k̂rcσiεijk
δV
δqj
pkk̂

†
r

= cσlεijk
δV
δqm

pnAli (φr,nr)Amj (φr,nr)Ank (φr,nr)

= cσlεlmn
δV
δqm

pn det [A (φr,nr)]

= cσlεlmn
δV
δqm

pn

(C.69)

where we have used (C.10) and the fact that the rotation matrix A has determinant 1.
From the above we see that symmetry operators in relativistic systems are generally given
by:

k̂r = Ĝ (φr,nr, pr) Ĝ
η
(

φη ,nrη, pη

)

(C.70)

that is, the operation in spatial and spin coordinates must be identical.

C.6 Double groups

C.6.1 Binary symmetry operations

Let us first look at binary operations associated with the main axes In spin basis they are
represented by

E Identity → I2
C2(x) Rotation π about the x-axis → −iσx

C2(y) Rotation π about the y-axis → −iσy

C2(z) Rotation π about the z-axis → −iσz

î Inversion → −iI2
σ̂yz Reflection in the yz-plane → −σx

σ̂zx Reflection in the zx-plane → −σy

σ̂xy Reflection in the xy plane → −σz

(C.71)

C.6.2 Example: D2

Consider the group D2 = {E,C2(z), C2(y), C2(x)}. The group multiplication table gives

E C2(z) C2(y) C2(x)

C2(z) E C2(x) C2(y)
C2(y) C2(x) E C2(z)
C2(x) C2(y) C2(z) E

(C.72)
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The corresponding multiplication table in spin representation is er:

I2 −iσz −iσy −iσx

−iσz −I2 −iσx iσy

−iσy iσx −I2 −iσz

−iσx −iσy iσz −I2

(C.73)

By comparison we see that the multiplication tables differ by phase phactors

1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

(C.74)

caused by the double periodicity of the elements. A correct representation may be obtained
in two ways;

• by a projective (ray) representation instead of the regular vector representation

GiGj = Gk ⇒ D(Gi)D(Gj) = ω(Gi, Gj)D(Gk) (C.75)

where ω(Gi, Gj) is phase factor that dependes of the order of operators Gi, Gj .

• Double groups: The periodicity of binary operations i extended from 2π to 4π.

Double groups are usually introduced by adding an extra element E representing a rotation
2π about an arbitrary axis and therefore commuting with all symmetry operations. We
shall proceed a bit more stringently using our representation in spin basis The element E
is the result of two binary operations about the same axis and is therefore represented by

E = R̂ (π,n) R̂ (π,n) ⇒ E = −i(σ · n) − i(σ · n) = −I2 (C.76)

By introducing the notation C2 = C2E we obtain the following multiplication table

E C2(z) C2(y) C2(x) E C2(z) C2(y) C2(x)

C2(z) E C2(x) C2(y) C2(z) E C2(x) C2(y)

C2(y) C2(x) E C2(z) C2(y) C2(x) E C2(z)

C2(x) C2(y) C2(z) E C2(x) C2(y) C2(z) E

E C2(z) C2(y) C2(x) E C2(z) C2(y) C2(x)

C2(z) E C2(x) C2(y) C2(z) E C2(x) C2(y)

C2(y) C2(x) E C2(z) C2(y) C2(x) E C2(z)

C2(x) C2(y) C2(z) E C2(x) C2(y) C2(z) E

(C.77)
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In order to construct a character table the distribution of symmetry operations among
classes need to be determined. Two operations belong two the same class if there exists
a third element in the group that bring the corresponding symmetry elements into each
other. as we have introduced periodicity 4π , C2 og C−1

2 are no longer identical. C2 og
C−1

2 belong to the same class if the group contains a binary rotation normal to the rotation
axis or if the group contains a vertical plane. A horizontal plane will reverse the direction
of the axis, but also the direction of rotation, so that the two effects cancel out.

In the double group D2 we have binary operations perpendicular two each other,
so that elements C2 og C2 are in the same class. The double group D2 therefore has
five classes {(E), (E), (C2(z), C2(z)), (C2(y), C2(y)), (C2(x), C2(x))} , and thereby five ir-
reducible representations. We have one extra irrep compared to the single group D2. The
extra irrep is spanned by functions with half-integer values of angular momentum and
they are therefore denoted fermion irreps. The regular irreps spanned by integer values of
angular momentum are the termed boson irreps.

The double group D2 has a total of eight elements, so that the extra irrep must be
twodimensional (it follows from the conditiona that the sum of squares of the dimension
of irreps equals the number of operations). This allows us to construct the following
character table:

D2 E E 2C2(z) 2C2(y) 2C2(x)

A 1 1 1 1 1 1√
2
(αβ − βα)

B1 1 1 1 −1 −1 z − 1√
2

(αβ + βα)

B2 1 1 −1 1 −1 y i√
2
(αα + ββ)

B3 1 1 −1 −1 1 x 1√
2
(αα − ββ)

E 1
2

2 −2 0 0 0 (α, β)

(C.78)

We see that the boson irreps duplicate the correponding irreps of the single groups, which
is understandable since they are spanned by functions for which the symmetry operations
have periodicity 2π. The character of E for the fermion irrep follows from its dimensional-
ity. The same holds for the character of E, but now with a minus sign since E = −I2j+1.
The character of the other operations can be deduced from the little orthogonality theo-
rem.

In the character table we give examples of spin functions that span the various irreps.
They can be obtained by projection operator. Note that the components of the triplet
do not span separate boson irreps, but form linear combinations corresponding to the
characters.



Appendix D

Diagonalization of quaternion

Hermitian matrix

We will consider the diagonalization of a quaternion Hermitian matrix

H = H0 + H1̌ı + H2̌ + H3ǩ = HT
0 −HT

1 ı̌ −HT
2 ̌ −HT

3 ǩ = H† (D.1)

From the condition of Hermiticity we see that H0 is a real symmetric matrix, whereas
H{1−3} are real antisymmetric matrices. The diagonalization of H proceeds in four steps:

1. Reduction to quaternion Hermitian tridiagonal matrix by a quaternion analogue of
the Householder method

2. Reduction to real symmetric tridiagonal matrix

3. Diagonalization of real symmetric tridiagonal matrix

4. Backtransformation to obtain eigenvectors

The first two steps are handled by the routine QHTRID and the final step by QHTRBK.
The third step is hadled by the standard TQL2 routine using the QL algorithm which
is described in [169]. When only eigenvalues and no eigenvectors are desired, the routine
TQLRAT is called instead of TQL2 and execution terminated after obtaining the eigenvalues.

A quaternionic number q and its conjugate q∗ is given by

q = a+ b̌ı + č + dǩ; q∗ = a− b̌ı − č − dǩ (D.2)

in which the quaternion units ı̌, ̌ and ǩ obey the following multiplication rules

ı̌2 = ̌2 = ǩ
2

= ı̌̌ǩ = −1 (D.3)
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From these multiplication rules it follows that quaternion number do not commute under
multiplication

qaqb = [a1 + ia2 + ja3 + ka4] [b1 + ib2 + jb3 + kb4]
= [a1b1 − a2b2 − a3b3 − a4b4]
+ ı̌ [a1b2 + a2b1 + a3b4 − a4b3]
+ ̌ [a1b3 − a2b4 + a3b1 + a4b2]

+ ǩ [a1b4 + a2b3 − a3b2 + a4b1] 6= qbqa

(D.4)

Note, however, that the real part of the product is independent of order. This means that
in devising an algorithm for quaternion diagonalization great care has to be taken in not
reversing the order of quaternion multiplication. The routine for quaternion number is in
its entirely written in terms of real variables.

D.1 Quaternion Householder matrices

We consider a quaternion Householder matrix P of the form

P = 1 − 2w · w†; |w|2 = w†w = 1 (D.5)

The matrix P is unitary as

P†P = P2 =
[

1 − 2w · w†] [1− 2w ·w†]

= 1 − 2w · w† − 2w ·w† + 4
[

w · w†] [w · w†]

= 1 − 2w · w† − 2w ·w† + 4w |w|2 · w† = 1

(D.6)

We now express the matrix P as

P = 1 − u · u†

H
; H ≡ 1

2
|u|2 (D.7)

where u can be any vector. We choose

u = x + |x| x1

|x1|
e1 (D.8)

where e1 is the unit vector [1, 0, . . . , 0]T and x is an arbitrary quaternion vector. This
gives

H = 1
2u

†u

=

[

x† + |x| x
∗
1

|x1|
e1

]

·
[

x + |x| x1

|x1|
e1

]

= |x|2 + |x| |x1|

(D.9)
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We then consider the action of P on the vector x:

P · x = x− u

H
·
(

x† + |x| x∗
1

|x1|e1

)

· x

= x−
u ·
[

|x|2 + |x| |x1|2
|x1|

]

|x|2 + |x| |x1|
= x− u

= |x| x1
|x1|e1

(D.10)

We see that P operating on x gives a vector in which all elements are zero except for the
first element, which is x1

|x1| We may note that operating on x with

x∗1
|x1|

P (D.11)

gives a real vector in which all elements are zero except for the first , which is |x|.

D.2 Reduction to quaternion Hermitian tridiagonal matrix

We want to reduce a quaternion n × n Hermitian matrix H to a quaternion Hermitian
tridiagonal matrix T through a finite series of quaternion unitary transformations. Using
quaternion Householder matrices (D.7) this may be accomplished in n− 2 steps.

Our quaternion Hermitian matrix H may be written as

H = H(0) =

[n− 1] [1]

[n− 1] A(0) b(0)

[1] b(0)† B(0)

(D.12)

where

b(0)† = [hn1, hn2, hn3, . . . , hn,n−1] ; B(0) = hnn (D.13)

We now choose a Householder matrix of the form

P(1) =

[

Q(1) 0

0 I1

]

: Q(1) = I(n−1) −
u(1)u(1)†

H
; H =

1

2

∣

∣

∣
u(1)

∣

∣

∣

2
(D.14)

with

u(1)† = b(0)† +
∣

∣

∣
b(0)

∣

∣

∣

b
(0)∗
(n−1)
∣

∣

∣
b
(0)
(n−1)

∣

∣

∣

e(n−1); H =
∣

∣

∣
b(0)

∣

∣

∣

2
+
∣

∣

∣
b(0)

∣

∣

∣

∣

∣

∣
b
(0)
(n−1)

∣

∣

∣
(D.15)
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The unitary transformation P(1)A(0)P(1) then gives

P(1)A(0)P(1) =

[

Q(1)A(0)Q(1) Q(1)b(0)

b(0)†Q(1) B(0)

]

(D.16)

with

b(0)Q(1) =
∣

∣

∣
b(0)

∣

∣

∣

b
(0)∗
(n−1)
∣

∣

∣
b
(0)
(n−1)

∣

∣

∣

e(n−1) =



0, 0, . . . , 0,
∣

∣

∣
b(0)

∣

∣

∣

h
(0)
(n−1)

∣

∣

∣
h

(0)
(n−1)

∣

∣

∣



 (D.17)

We see that the elements of b(0) has been zeroed out, except for the final element. We
may now write the transformed matrix as:

H(1) =

[n− 2] [2]

[n− 2] A(1)
[

b(1) 0
]

[2]

[

b(1)†

0

]

B(1)

(D.18)

where

B(1) =











h
(1)
(n−1),(n−1)

∣

∣b(0)
∣

∣

b
(0)
(n−1)

˛

˛

˛
b
(0)
(n−1)

˛

˛

˛

∣

∣b(0)
∣

∣

b
(0)∗
(n−1)

˛

˛

˛
b
(0)
(n−1)

˛

˛

˛

h
(0)
nn











(D.19)

After step (i− 1) our quaternion matrix has the structure

H(i−1) =

[n− i] [i]

[n− i] A(i−1)
[

b(i−1) 0(i−1)
)

[i]

[

b(1)†

0(i−1)†

]

B(i−1)

(D.20)

Here 0(i−1) is a (i− 1) × (n− i) zero matrix while B(i−1) is a i× i quaternion tridiagonal
matrix. For step i we introduce the index m defined by m = n − i and choose the
Householder matrix

P(i) =

[

Q(i) 0i

0i Ii

]

; Q(i) = Im − u(i)u(i)†

H
; H =

1

2

∣

∣

∣
u(i)
∣

∣

∣

2
(D.21)

with

u(i)† = b(i−1)† +
∣

∣

∣
b(i−1)

∣

∣

∣

b
(i−1)∗
m
∣

∣

∣
b
(i)
m

∣

∣

∣

em; H =
∣

∣

∣
b(i)
∣

∣

∣

2
+
∣

∣

∣
b(i)
∣

∣

∣

∣

∣

∣
b(i)m

∣

∣

∣
(D.22)
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After (n− 2) steps the quaternion Hermitian matrix H has been reduced to a quaternion
Hermitian tridiagonal matrix T:

T = VHV†; V =

n−2
∏

i=1

P(i) (D.23)

D.3 Reduction to real symmetric tridiagonal matrix

The quaternion Hermitian tridiagonal matrix TQ has the structure

TQ =





























h
(n−2)
11 h

(n−2)∗
21 0 . . . 0 0 0

h
(n−2)
21 h

(n−2)
22 c(n−2)∗ . . . 0 0 0

0 c(n−2) h
(n−3)
33 . . . 0 0 0

...
...

...
. . .

...
...

...

0 0 0 . . . h
(1)
(n−2),(n−2)

c(2)∗ 0

0 0 0 . . . c(2) h
(1)
(n−1),(n−1) c(1)∗

0 0 0 . . . 0 c(1) h
(0)
nn





























(D.24)

where

c(i) =
∣

∣

∣
b(i−1)

∣

∣

∣

b
(i−1)∗
(m)
∣

∣

∣
b
(i−1)
(m)

∣

∣

∣

=
∣

∣

∣
b(i−1)

∣

∣

∣

h
(i−1)
(m+1),m

∣

∣

∣
h

(i−1)
(m+1),m

∣

∣

∣

(D.25)

We now consider the unitary transformation

TR = τ
†TQτ ; τ

†
τ = I; τij = τiδij (D.26)

transforming TQ to a real symmetric tridiagonal matrix TR using the quaternion unitary
diagonal matrix τ . For the case n = 3 the transformation is

TR = τ †TQτ =





τ∗1 0 0
0 τ∗2 0
0 0 τ∗3









t11 t∗21 0
t21 t22 t∗32
0 t32 t33









τ1 0 0
0 τ2 0
0 0 τ3





=





τ∗1 t11τ1 τ∗1 t
∗
21τ2 0

τ∗2 t21τ1 τ∗2 t22τ2 τ∗2 t
∗
32τ3

0 τ∗3 t32τ2 τ∗3 t33τ3





(D.27)
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Using the unitarity of τ and the fact that the diagonal elements of TQ are real, we
obtain:

TR = τ
†TQτ =





t11 τ∗1 t
∗
21τ2 0

τ∗2 t21τ1 t22 τ∗2 t
∗
32τ3

0 τ∗3 t32τ2 t33



 (D.28)

We then find:

τ3 = 1

τ2 =
t∗32
|t32|

τ1 =
t∗21
|t21|

t∗32
|t32|

=
t∗21
|t21|

τ2

(D.29)

Generalizing we find:

τm =
c(i)∗
∣

∣c(i)
∣

∣

τ(m+1) =
h

(i−1)∗
(m+1),m

∣

∣

∣
h

(i−1)
(m+1),m

∣

∣

∣

τ(m+1) (1 < m < n)

τn = 1

(D.30)

D.4 Implementation of tridiagonalization

We now consider the computational expressions for the reduction of a quaternion Hermi-
tian matrix to a real symmetric tridiagonal matrix. We first consider the matrix:

A(i−1)Q(i) = A(i−1)

[

Im − u(i)u(i)†

H

]

= A(i−1) − p(i)u(i)† (D.31)

where we have introduced the vector p(i):

p(i) ≡ A(i−1)u(i)

H
(D.32)

Note that due to the hermiticity of A we have:

p(i)† =
u(i)†A(i−1)

H
(D.33)

The full Householder transformation of the subblock A(i−1) of the matrix H(i−1) then
becomes:

Q(i)A(i−1)Q(i) =

[

Im − u(i)u(i)†

H

]

[

A(i−1) − p(i)u(i)†
]

= A(i−1) − p(i)u(i)† − u(i)p(i)† + 2u(i)Ku(i)†
(D.34)
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where we have introduced the scalar K defined by

K ≡
[

u(i)†A(i−1)u

2H2

]

(D.35)

K is real due to the hermiticity of A:

K∗ =

[

u(i)†A(i−1)†u
2H2

]

= K (D.36)

If we write

q ≡ p−Ku (D.37)

then we have

Q(i)A(i−1)Q(i) = A(i−1) − q(i)u(i)† − u(i)q(i)† (D.38)

This is the computationally useful formula.

D.5 Eigenvectors

The complete tranformation of the quaternion Hermitian matrix H to a real diagonal
matrix Λ is given by

Λ = U†HU; U = VτO (D.39)

with

V =
∏n−2

i=1 P(i) - reduction to quaternion Hermitian tridiagonal matrix
τ -reduction to real symmetric tridiagonal matrix
O -reduction to real diagonal matrix

(D.40)

The transformation from a real tridiagonal to real diagonal matrix is handled by the QL
algorithm, described in [169]. From the eigenvectors obtained from the real tridiagonal
matrix we may backtransform to the eigenvectors of the quaternion Hermitian matrix. In
the first step the eigenvectors of the quaternion Hermitian tridiagonal matrix are recovered:

U(2) = [τO]kj =
n
∑

i=1

τikδikokj = τkkokj (D.41)
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Then follows (n-2) steps in which the eigenvectors of the full quaternion Hermitian matrix
are recovered. In step i we have

Z(i) = P(i)Z(i−1) =

[

Qmm 0mi

0im Iii

] [

Zmm Zmi

Zim Zii

]

=

[

QmmZmn

QimZin

]

(D.42)

A computational useful formula is found by expansion:

[QZ]kj =
∑

l

QklZlj =
∑

l

(

δkl − uk
u
†
l

H

)

Zlj = Zkj − uksj (D.43)

where we have introduced

sj =
∑

l

u
†
l

H
Zlj (D.44)



Appendix E

Angular part of atomic 2-spinors

In these notes angular 2-spinors and corresponding spherical harmonic functions are tab-
ulated and plotted. The density plots appearing in these notes have been made by Jon K.
Lærdahl.

The angular functions χκ,mj appearing in the solutions of the Dirac equation for hy-
drogenlike atoms can be written the angular part of the hydrogenic solutions to the Dirac
equation

χκ,mj =
1√

2l + 1









a
√

l + 1
2 + amjY

mj− 1
2

l

√

l + 1
2 − amjY

mj+
1
2

l









(E.1)

where

κ = a(j + 1/2); a = 2(j − l) = ±1 (E.2)

The Y m
l are spherical harmonic functions (with the Condon-Shortley phase convention)

[70]

Y m
l (θ, φ) ≡ (−1)m

√

2l + 1

2

(l −m)!

(l +m)!
Pm

l (cosφ) eimφ (E.3)

defined in terms of associated Legendre functions

Pm
l (x) =

1

2ll!

(

1 − x2
)m/2 dl+m

dxl+m

(

x2 − 1
)l

; −l ≤ m ≤ l (E.4)
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E.1 Spherical harmonics

For reference we tabulate the spherical harmonics up to l = 3

l ml Nl,m polar form Cartesian form

1 0
√

3
4π cosΘ z

1 ±1 ∓
√

3
8π sinΘe±iφ (x± iy)

2 0
√

5
16π

(

3 cos 2Θ − 1
)

2z2 − x2 − y2

2 ±1 ∓
√

15
8π cosΘ sinΘe±iφ xz ± iyz

2 ±2
√

15
32π sin 2Θe±2iφ x2 ± 2ixy − y2

3 0
√

63
16π

(

5
3 cos 3Θ − cos Θ

)

2z3 − 3x2z − 3y2z

3 ±1 ∓
√

21
64π sinΘ

(

5 cos 2Θ − 1
)

e±iφ 4xz2 ± i4yz2 − x3 ∓ ix2y − xy2 ∓ iy3

3 ±2
√

105
32π sin 2ΘcosΘe±2iφ x2z ± 2ixyz − y2z

3 ±3 ∓
√

35
64π sin 3Θe±3iφ x3 ± 3ix2y − 3xy2 ∓ iy3

(E.5)

Density Plots:

Y10 : Y1±1 :
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Y20 : Y2±1 : Y2±2 :

Y30 : Y3±1 : Y3±2 :

Y3±3 :



272 Ch.E Angular part of atomic 2-spinors

E.2 2-spinors

In this section we list the angular 2-spinors up to j = 7/2. We use the notation (l)(j,mj)
where (l) = s, p, d, f with reference to the angular quantum number l.
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[54] J.-M. Lèvy-Leblond. Galilei group and galilean invariance. In E. M. Loebl, editor,
Group Theory and Its Applications, volume II, page 221. Academic Press, New York,
1971.
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