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Abstract

This thesis concerns quadratic response properties, foremost their application to
properties related to Jablonski diagrams such as resonant two-photon absorption
and excited state absorption. Our main interest lie in optical power limitting
applications, and in this context, molecules containing heavy metal atoms prove
superior. Therefore, we are interested in the effects of relativity on these properties.
In order to assess relativistic effects, a four-component relativistic framework is
adopted.

To properly address the molecular properties of interest, not only relativistic
effects are important, but also electron correlation. These two properties are not
additive, but need to be addressed on the same footing, and, due to the size of
the molecules under consideration, we present the implementation of quadratic
response properties at the four-component density functional level of theory. For
second-harmonic generation, we have demonstrated that correlation and relativity
are not additive and that the inclusion of noncollinear magnetization is of little
importance.

In the four-component framework, we also present the implementations of sin-
gle and double residues of the first-order hyperpolarizability, i.e., the evaluation of
resonant two-photon absorption cross section and excited state properties. Using
these tools we discuss different levels of approximation to the relativistic Hamilto-
nian and we demonstrate that for two-photon absorption, a proper treatment of
relativistic effects qualitatively alter the spectrum.

Finally, quantum chemistry in conjunction with electrodynamics is applied to
investigate clamping levels in macroscopic samples. The microscopic properties of
optically active chromophores are determined by quantum chemistry, and then,
electrodynamics is successfully used in order to describe the interaction between
chromophores embedded in a host material and laser light.
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Populärvetenskaplig sammanfattning

D̊a ljus färdas genom ett material kommer ljuset och materialet att ömsesidigt
p̊averkar varandra. Ett materials färg är t.ex. relaterad till dess absorption. Vid
l̊aga ljusintensiteter kommer denna växelverkan att vara linjär, men d̊a intensiteten
ökar allt mer kommer ickelinjära effekter att bli märkbara. Ett exempel p̊a detta
är s̊a kallad tv̊afotonsabsorption, där ett material kan vara genomskinligt i normalt
ljus men mörkt eller färgat d̊a det träffas av högintensivt ljus, t.ex. fr̊an en laser.

Denna avhandling behandlar hur man kan använda kvantmekaniska beräkningar
för att bestämma ickelinjära optiska effekter i olika molekyler. Ett starkt fokus lig-
ger p̊a hur dessa molekyler kan användas för att skydda optiska sensorer fr̊an att
bli skadade av laserljus. Många av de molekyler som visat sig framg̊angsrika i dessa
applikationer inneh̊aller tunga metallatomer. I de tyngre grundämnena har rela-
tivistiska effekter en stor inverkan p̊a egenskaperna. Om man bortser fr̊an relativis-
tiska effekter skulle beräkningar visa att guld är silverfärgat, medan den korrekta
färgen erh̊alls d̊a dessa effekter tas i beaktande. Mot denna bakgrund har vi utveck-
lat metoder för att se hur relativistiska effekter p̊averkar ickelinjära optiska egen-
skaperna. Vidare illustreras en metod där kvantmekanik tillsammans med elektro-
dynamik används för att visa hur molekyler ingjutna i ett glasmaterial p̊averkar en
ljuspuls som färdas genom materialet. Detta arbete visar hur man i ett kombinder-
ade ramverk av tv̊a teorier kan simulera egenskaper hos ett makroskopiskt objekt
genom att man känner till egenskaperna för dess mikroskopiska best̊andsdelar.
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like to thank Ingegärd Andersson for taking care of most administrative matters
and making paper work flow as smoothly as possible. Then, last but not least,
my friends, both inside and outside the university. Hopefully no one will feel
left out, but there are some who deserve a special mentioning; Ulf Ekström for
our collaboration and discussions concerning our work on Dalton and Dirac,
Auayporn Jiemchooroj and Magnus Hultell for helpful comments on this thesis,
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CHAPTER 1

Introduction

“Every attempt to employ mathematical methods in the study
of chemical questions must be considered profoundly irrational
and contrary to the spirit of chemistry. If mathematical analysis
should ever hold a prominent place in chemistry—an aberration
which is happily almost impossible—it would occasion a rapid
and widespread degeneration of that science.”

Auguste Comte, Cours de Philosophie Positive, 1830

In light of the above quote by Auguste Comte, this thesis seems to make little
sense; however, within a hundred years this statement would prove utterly wrong.
The late 19th and early 20th century introduced radical changes in the views on
physics and chemistry — on the macroscopic scale, the theory of relativity was
introduced and, on the microscopic scale, quantum mechanics made its entry. In
the light of these developments, Paul Dirac stated:13

“The underlying physical laws necessary for the mathematical theory of a
large part of physics and the whole of chemistry are thus completely known,
and the difficulty is only that the exact application of these laws leads to
equations much too complicated to be soluble. It therefore becomes desirable
that approximate practical methods of applying quantum mechanics should
be developed, which can lead to an explanation of the main features of
complex atomic systems without too much computation.”

The “approximate practical methods” called for are what this thesis is concerned
with, more precisely in a context where relativity needs to be incorporated with
quantum mechanics.

The definition of a “practical method” is, of course, intimately connected to
the accuracy wanted and the computational resources at hand. In the early days of
quantum mechanics, crude approximations were needed, but as computers were in-
troduced and grew more complex and capable, so did the applicability of quantum
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2 Introduction

mechanical calculations. Worth noticing is that this development was predicted as
early as 1838 when Charles Babbage, an English mathematician, philosopher, and
mechanical engineer who originated the idea of a programmable computer, stated
that with such a machine at hand

”All of chemistry, and with it crystallography, would become a branch
of mathematical analysis which, like astronomy, taking its constants from
observation, would enable us to predict the character of any new compound
and possibly the source from which its formation might be anticipated.”

Over the last decades, the advances in computational methods and computer
hardware have made Babbage’s vision, to predict properties of novel materials, a
reality. For example, today, computations are routinely used to aid interpreta-
tion of experimental data as well as predicting properties of new, functionalized,
materials before they are even synthesized. In a world where smaller and smaller
building blocks are considered when manufacturing devices, accurate computa-
tional predictions form valuable and cost effective tools. Some of these tools are
treated in this thesis, and the common denominator of the different topics is the
strive for a device protecting optical sensors from laser radiation.

1.1 Optical Power Limiting

In 1960, the first laser was constructed by Theodore Maiman at Hughes Research
Laboratories.34 Since then, lasers have developed considerably — the intensity
has been largely increased, lasers have been made tunable so that they are not
locked at a specific wavelength, devices get smaller, etc.11 All these developments
have made lasers powerful tools useful in many applications ranging from high
quality spectroscopy through medicine to cutting tools. The intensity and focus of
the laser beam, which makes lasers such a useful tool in many applications, poses
a potential problem when it comes to optical sensors which might be dazzled,
blinded, or even destroyed if subjected to laser radiation. In light of this, a need
and demand for optical power limiting devices to protect optical sensors have
emerged, and over recent years, the Swedish Defence Research Agency, foi, has
coordinated a collaboration with the goal to develop such a product. Within this
collaboration, theoretical modeling of molecular materials has been employed as
guidance for which materials to focus on.

The apparent issue when it comes to protecting optical sensors from laser
damage is that light in this case is both the origin of information and the cause
of damage. For apparent reasons, the source of harm cannot be screened per-
manently, since then, the optical information one strives to retrieve will also be
lost. The key difference between useful and harmful light is the intensity, i.e., laser
light is high-intensive, and, thus, it can damage sensors. The task at hand is to
create a device (see Figure 1.133) that will allow useful light to enter the system
at intensities below the damage threshold, whereas it blocks high-intensive light
beyond this threshold.

Since high-intensive lasers might damage a sensor in a single pulse, a self-
activated part filter is called for since there is no time to activate a filter upon
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Figure 1.1. Schematic layout of a laser protection device under development by the
Swedish Defence Research Agency.33

detection of an incident laser pulse. This has been successfully achieved using
two-photon absorption and processes following,9,36,41,44,50,51,52 which is further
discussed in Section 1.2. Due to saturation, this self-activated part of the device
will only be able to block a first pulse, or maybe the first few pulses, but it will
not work against continuous lasers or consecutive pulses. Despite saturation, the
self-activating part plays a crucial role as it enables for a second, controlled part
of the device to be activated. For apparent reasons, the controlled filter has to
have a response time shorter than the saturation of the self-activating one, which
is why foi has turned their attention to so-called spin-transition materials. These
materials and their functions are outlined in Section 1.3.

1.2 Passive Protection and Jablonski Diagrams

Upon light irradiation, a molecule may absorb photons, resulting in an excited
molecular state. Figure 1.2, a so-called Jablonski diagram, illustrates different
optical properties of the platinum compound studied in Paper VI. As can be seen,
one photon is not sufficient to bring this molecule into an excited singlet state,
which means that the material will be transparent at low intensities, i.e., when
one-photon absorption (opa) is the dominating process. However, as the inten-
sity increases, the probability of absorbing two or more photons simultaneously
becomes significant. Thus, at high intensities, two-photon absorption (tpa) can
bring the molecule into an excited state, which is the onset of the filter. Once
in an excited state, a rapid relaxation to the lowest excited singlet state follows
(τ ∼ 1 ps).52 From this state, relaxation brings the molecule either back into its
ground state (τ ∼ 10 ns) or via an intersystem crossing (isc) into the triplet state
manifold (τ ∼ 100 ns).52 The triplet state has a significant lifetime (τ ∼ 1 µs),37

and, thus, from here, it is possible to achieve significant opa within the triplet
manifold. This is known as excited state absorption (esa). Utilizing materials
with large tpa cross section and high yield in the isc open the possibilities to
create materials suitable for self-activating protections.
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Figure 1.2. Jablonski diagram illustrating the absorption processes in a Pt(II) com-
pound. For further details, see Paper VI.

Computational evaluation of properties related to the Jablonski diagram form
the main part of this thesis, as will also be further illustrated in Chapter 3. The
main focus lies on how relativity affects these properties and how it is included into
the calculations. The need to account for this springs from the fact that materials
containing heavy metal atoms provide superior isc yields.36

1.3 Active Protection and Spin-transitions

The active part of the device sketched in Figure 1.1 is used to provide protection
when the self-activated part saturates. The requirement that the controlled part
is activated before saturation is reached, eliminates any mechanical solutions or
solutions based on liquid crystals since their response times are orders of mag-
nitude too slow. Instead of relying on reconfiguration of entire molecules, like
liquid crystals, in order to change the optical properties of a material, the Swedish
Defence Research Agency considers the possibility to use the much faster process
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of electronic reconfiguration. If the electronic configuration of a molecule can be
controlled by external perturbations, and if one configuration is colored whereas
the other one is colorless, it will be possible to realize a fast controlled filter. The
approach investigated by foi is to use so-called spin-transition (st) materials.
The concept of such a spin-transition is illustrated in Figure 1.3, where it is shown
how reversible transitions between two different electronic configurations can be
brought about, all depending on external perturbations such as changes in tem-
perature, pressure, light irradiation, etc. Below follows a brief introduction to the
materials investigated by foi and treated by us in Ref. 22.

Perturbation

High-spin

Low-spin

Figure 1.3. Schematic illustration of the electron configurations of the low-spin and
high-spin states.

In atomic iron, the 3d-orbitals are all degenerate, however, if ligands are at-
tached in octahedric coordination, this degeneracy is lifted, and, in the Oh point
group, the three 3d-orbitals of symmetry t2g will be lower in energy than the two
of symmetry eg.6 These orbitals are illustrated in Figure 1.3. If six valence elec-
trons are distributed among these 3d-orbitals, in a weak ligand field, the splitting
of the t2g- and eg-orbitals is small, and, thus, Hund’s rules apply forming a quin-
tet configuration with four open shells, a high-spin (hs) state. If, on the other
hand, the ligand field is strong, the orbital splitting is large and all six electrons
are found in the t2g-orbitals forming a closed-shell, or low-spin (ls), state.20 In
the intermediate case, the state of the system depends on external perturbations.
The different electronic structures of the two states are associated with different
molecular properties, the most obvious being the change in magnetic properties.

From a practical point of view, the challenge lies in finding materials with
suitable optical properties in the two states as well as a switching criterion that
enables practical devices. Experiment can be largely aided by computational in-
vestigations since the synthesis of the considered spin-transition compounds is
tedious. For example, if the absorption spectra of the different states can be cal-
culated, only the most promising systems need to be synthesized, or, if one can
assess the relative stability of the high- and low-spin states, candidates not capa-
ble of spin-transitions can be ruled out. These topics have been touched upon in
Ref. 22, but will not be treated further in this thesis.



6 Introduction



CHAPTER 2

Molecular Electronic-structure Theory

“I think that I can safely say that nobody understands quantum
mechanics.”

Richard Feynman, The Character of Physical Law, 1965

The cornerstone, and starting point, when describing a quantum mechanical sys-
tem is the quantum mechanical wave equation

i~
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉. (2.1)

This equation gives the possibility to describe matter by wave functions, but an-
alytical solutions exist only for a very limited number of systems. The necessity
for approximative solutions were, as quoted in the Introduction, pointed out by
Dirac and further emphasized by Gilbert Lewis31

”...in the Schrödinger equation we very nearly have the mathematical
foundation for the solution of the whole problem of atomic and molecular
structure...”
[but]
“...the problem of the many bodies contained in the atom and the molecule
cannot be completely solved without a great further development in mathe-
matical technique.”

The tools needed to attack these problems are introduced in this chapter.

2.1 Self-consistent Field Theory

The wave equation (2.1) provides the tool for describing quantum mechanical
systems, however, as pointed out, approximate methods are necessary and the key
issue is to find good approximations. In the following, two different approaches

7



8 Molecular Electronic-structure Theory

to tackle this problem are outlined; wave function and density functional theory
(dft) methods. The discussion will only focus on solving the electronic structure
problem for fixed nuclear positions, i.e., the Born–Oppenheimer approximation is
employed. This approximation states that the quantum mechanical wave equation,
to good approximation, can be separated into an electronic part solved for fixed
nuclear positions and a nuclear part where the electronic solution is utilized as
potential energy surface. The justification for this lies in the fact that the much
heavier nuclei move much slower than the electrons.

2.1.1 Wave Function Methods

In a fixed nuclear framework, the electronic Hamiltonian of a molecule is

Ĥ =
∑
i

ĥi +
∑
i>j

ĝij , (2.2)

where ĥi is the one-electron part of the Hamiltonian, ĝij is the two-electron part,
and i and j are indices referring to electrons. Given a wave function, ψ, the energy
of a system can be evaluated according to

E[ψ] =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 , (2.3)

and if the wave function is constructed such that it contains variational parame-
ters, it is possible to adjust these parameters until the minimum energy is found.
Together with the variational principle,19 which states that for any given wave
function, ψ, the energy functional yields an upper bound of the true ground state
energy E0, i.e.,

E0 ≤ E[ψ], (2.4)

where the equality holds if and only if ψ is the exact ground state wave function.61

This maps a route toward finding approximate solutions in an iterative fashion.
Turning the attention to the wave function, in a quantum mechanical system

containing N electrons, let these electrons be distributed among N orthogonal
spin-orbitals, φi. The total wave function can now be constructed from these
spin-orbitals under the restriction that a physical wave function is retrieved. One
way to achieve this is by forming a so-called Slater determinant61

|ψ〉 =
1√
N !

∣∣∣∣∣∣∣∣∣
φ1(r1) φ2(r1) · · · φN (r1)
φ1(r2) φ2(r2) · · · φN (r2)

...
...

. . .
...

φ1(rN ) φ2(rN ) · · · φN (rN )

∣∣∣∣∣∣∣∣∣ , (2.5)

where r denotes electron coordinates. If, for simplicity, the wave function is con-
structed from a single Slater determinant, i.e., neglecting electron correlation, we
arrive at the Hartree–Fock equations61

F̂ φi =
∑
j

λijφj , (2.6)
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where λij are Lagrangian multipliers and F̂ is the Fock operator

F̂ = ĥ+
∑
j

(Ĵj − K̂j), (2.7)

where Ĵ and K̂ are the Coulomb and exchange operators, respectively.61 Equa-
tion (2.6) can be diagonalized yielding the so-called canonical Hartree–Fock equa-
tions,

F̂ φ′i = εiφ
′
i, (2.8)

where εi are the orbital energies.
So far, the spin-orbitals have only been treated as abstract entities, but in order

to be useful in numerical calculations, a concrete form is required. In a molecule,
the spin-orbitals will be so-called molecular orbitals, extended over the whole or
parts of the molecule. Introducing a basis set (see Section 2.2 for further details) of
atomic orbitals, χi, the molecular orbitals can be expressed as linear combinations
thereof,

φj =
∑
i

cijχi, (2.9)

which finally turns the Hartree–Fock equations into a matrix equation known as
the Roothaan–Hall equation,

FC = SCE, (2.10)

where the Fock matrix elements are given by

Fij = 〈χi|F̂ |χj〉, (2.11)

the overlap matrix elements by

Sij = 〈χi|χj〉, (2.12)

all the expansion coefficients cij have been collected in C, and E is a diagonal
matrix with the orbital energies, εi, as diagonal elements. Given a wave function,
the Fock matrix can be constructed, and the generalized eigenvalue problem (2.10)
yields a new C-matrix. This in turn updates the wave function according to
Eq. (2.9), and the procedure is repeated until convergence is reached — the so-
called self-consistent field method.

2.1.2 Density Functional Theory

Above, the wave function formalism was outlined, and as could be seen, every
single electron is explicitly accounted for, i.e., N sets of electron coordinates have
to be dealt with. If instead considering the electron density,

ρ(r) = N·
∫
· · ·
∫
|ψ|2dr2 . . . drN , (2.13)

a quantity which is always described by three spatial coordinates, the complexity
remains the same regardless of system size. Hence, a tempting thought is to base
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a theory on the electron density instead of the wave function. This idea was raised
in the very early days of quantum mechanics by both Thomas and Fermi, the
so-called Thomas–Fermi theory (see for example Ref. 48 for a detailed discussion).
However, this theory, and modifications thereof, proved inadequate and unable
to compete with wave function methods. For over thirty years, density based
methods were fighting an uphill battle, but this drastically changed in 1964 with
the groundbreaking paper by Hohenberg and Kohn.25 In this paper it is proven
that the ground state electron density uniquely determines both the potential
defining the system, v(r), within an additive constant, as well as the number of
electrons, N , and, thus, all ground state properties. Following this, the ground
state energy can be written in terms of density functionals according to

E[ρ] =T [ρ] + Vee[ρ] + Vne[ρ]

=T [ρ] + Vee[ρ] +
∫
v(r)ρ(r)dr

=F [ρ] +
∫
v(r)ρ(r)dr, (2.14)

where the terms in the first line correspond to the kinetic energy of the electrons
and the potential energy terms due to electron-electron and electron-nuclear in-
teractions. Treating the electron-nuclear interaction separately leaves a universal
functional, F [ρ], valid for any potential and any number of electrons. Further-
more, Hohenberg and Kohn proved that for electronic ground states, the vari-
ational principle holds. Any given density ρ ≥ 0 will, inserted into the energy
functional, provide an upper bound of the ground state energy, E0, i.e.,

E0 ≤ E[ρ]. (2.15)

The paper by Hohenberg and Kohn provided a theoretical foundation for den-
sity functional methods, but practical problems still remained since knowledge of
the functional form of F [ρ] was required, or rather of the kinetic energy functional
and the functional describing electron-electron interactions. This problem was
addressed a year later, in 1965, by Kohn and Sham.30 As a starting point, they
reintroduced the concept of orbitals and considered a system of N noninteract-
ing electrons in N orbitals φi. For such a system, it is possible to find the exact
solution to the wave equation [

T̂ + vs(r)
]
φi = εiφi, (2.16)

where T̂ is the kinetic energy operator and vs(r) is a potential chosen such that

ρ(r) =
∑
i

〈φi(r)|φi(r)〉 (2.17)

yields the exact electron density of the corresponding interacting system. Using
the orbitals introduced, the kinetic energy of the noninteracting system is given
by

Ts[ρ] =
∑
i

〈
φi

∣∣∣T̂ ∣∣∣φi〉 . (2.18)
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Now, returning to Eq. (2.14), using the kinetic energy of the noninteracting sys-
tem, Ts, and explicitly accounting for the Coulomb part of the electron-electron
interaction, J , it is possible to rewrite the energy functional (2.14) as

E[ρ] = Ts[ρ] + J [ρ] + Exc[ρ] +
∫
v(r)ρ(r)dr, (2.19)

where the exchange-correlation functional

Exc[ρ] = (T [ρ]− Ts[ρ]) + (Vee[ρ]− J [ρ]) (2.20)

has been introduced. An exchange-correlation potential is now defined through

vxc(r) =
δExc[ρ]
δρ(r)

, (2.21)

which leads to the the Kohn–Sham equations[
ĥ+

∫
ρ(r′)
|r− r′|dr

′ + vxc(r)
]
φi(r) = εiφi(r). (2.22)

It is easy to see the resemblance between these equations and the Hartree–Fock
ones. The difference is that the exchange term in the Hartree–Fock equations
has been replaced by the exchange-correlation term. Thus, it is realized that the
machinery established for solving the Hartree–Fock equations, the self-consistent
field method, is equally well applicable for solving the Kohn–Sham ones. It should
finally be noted that knowledge of the exact exchange-correlation functional will
yield the exact density, and, hence, the exact ground state properties of the system
under consideration.

2.1.3 Relativistic Considerations

Up until now, no reference has been made to whether the quantum mechanical
wave equation is nonrelativistic or relativistic. The theory as such has only been
presented in terms of the Hamiltonian and its constituent operators. It is first
when these operators are investigated, the differences, and, thus, the effects of a
relativistic theory, show.

For a free particle, the Schrödinger equation, i.e., the nonrelativistic wave equa-
tion, takes the form

i~
∂

∂t
ψ = − ~2

2m
∇2ψ, (2.23)

which is a first-order differential equation in time but second-order in space. The
different orders of derivatives with respect to space and time prevent this equa-
tion from being Lorentz covariant, and, hence, it is not consistent with special
relativity.57

Introducing the concept of the correspondence principle,58 quantum mechani-
cal operators are to correspond to observables in classical physics. From the action
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of operators on plane waves, the quantum mechanical energy and momentum op-
erators are assigned as

Ê = i~
∂

∂t
and p̂ =

~
i
∇, (2.24)

respectively, and it is seen that the Schrödinger equation for a free particle is
in accordance with the energy expression, E = p2/2m, from classical mechanics.
Along these lines, attempts were made to reach a relativistic wave equation from
the relativistic energy expression E2 = (cp)2 + (mc2)2. Such an approach was
considered already by Schrödinger and later also by several others, leading to what
today is known as the Klein–Gordon equation.59 However, due to the second-order
derivative in time, the probability density is not positive definite, and, therefore,
the equation was discarded as unphysical.a

The negative probability density of the Klein–Gordon equation led Dirac to-
ward an equation linear in both space and time, the equation known as the Dirac
equation.12 For a free electron, the Dirac equation is written as

i~
∂

∂t
ψ =

{
cαkp̂k + βmc2

}
ψ, (2.25)

where Einstein summation is applied over the index k. A closer examination shows
that the coefficients α and β are Hermitian matrices and that rank 4 is the smallest
dimension satisfying the demands put upon them.57 The matrices are given by

αi =
(

0 σi

σi 0

)
and β =

(
I2 0
0 −I2

)
, (2.26)

where σi are the Pauli spin matrices. As compared to the Schrödinger equation
where the wave functions are scalar functions, the solutions of the Dirac equation
have four components, so-called four-spinors. The solutions spanning the four
components fall into two categories, two with positive-energy solutions and two
with negative ones. The interpretation of the different terms will be outlined
below, following the discussion by Schwabl.57

Considering an electron at rest, it is seen that the components of the spinor
give rise to two positive-energy solutions and two negative ones. (It should be
noted that the occurrence of both positive- and negative-energy solutions requires
that special attention is paid to the self-consistent field procedure.54) In order to
continue the interpretation, an electromagnetic field is applied. Due to the vector
potential, A, this modifies the momentum operator according to

p̂→ π̂ = p̂− e

c
A (2.27)

and, furthermore, a term, eΦ, related to the scalar potential is added. Hence, in
an electromagnetic field, the Dirac equation is57

i~
∂

∂t
ψ =

{
cαkπk + βmc2 + eΦ

}
ψ. (2.28)

aN.b., it was later discovered by Pauli and Weisskopf49 that the Klein–Gordon equation
properly describes massive particles with spin 0.
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Going to the nonrelativistic limit, it is found that the negative-energy solutions are
roughly a factor v/c smaller than the positive-energy solutions, and they are there-
fore referred to as small- and large-component solutions, respectively.57 Focusing
on the positive-energy solutions, it is seen that the Dirac equation reduces to the
so-called Pauli equation,58 which describes spin added ad hoc to nonrelativistic
theory. Thus, the Dirac equation intrinsically describes spin, and the components
of the four-spinor are

ψ =


ψLα

ψLβ

ψSα

ψSβ

 , (2.29)

where α and β refer to spin and L and S refer to the large- and small-components.

Reductions of Relativistic Hamiltonians

Computationally, the four-component Dirac equation will, for technical reasons,
be about two orders of magnitudes more demanding than its nonrelativistic coun-
terpart.26 Considerable efforts have been put into reducing these costs at the
four-component level,7,32,40,53,55,62,63 but still, these methods are computationally
demanding. One of the key issues is the coupling between the large- and small-
component bispinors of the four-spinor. Considering the Dirac equation, two types
of operators can be identified — even ones that do not couple the large- and small-
component parts, and odd ones that do. In chemical applications in general, the
contributions from the small-component bispinor are small.53 Therefore, methods
have been sought that decouple the large- and small-component bispinors of the
Dirac equation in order to achieve two two-component equations, where the in-
terest lie in the large-component equation. In the literature, two approaches to
decouple the positive energy solutions from the negative ones exist; elimination of
the small-component and decoupling by a unitary transformation. Recently, it has
been shown that these two methods are equivalent.26 As for decoupling through
a unitary transformation, the idea was introduced by Foldy and Wouthuysen,17

and detailed accounts of this transformation is, for example, given in the books by
Schabl57 and Strange.60 The basic idea is that successive application of a unitary
transformation will form weaker and weaker couplings between the two compo-
nents, i.e., reducing the influence of odd operators, at the same time as relativistic
correction terms are added. The scalar relativistic correction terms are easily incor-
porated into nonrelativistic codes, whereas dedicated programs are needed in order
to account for couplings between the two spin-components, e.g., spin-orbit cou-
pling. Numerous modifications of the Foldy–Wouthuysen scheme have been pro-
posed, e.g., the Douglas–Kroll–Heß,14,23,24 Barysz–Sadlej–Snijders,4,5 and infinite-
order two-component26 Hamiltonians.

2.2 Basis Sets

Above, the quantum chemical methods and the underlying equations have been
dealt with. However, apart from Eq. (2.9), nothing has been said about the ba-
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sis functions, χ, and basis sets thereof spanning the matrix equations. From a
physical point of view, so-called Slater-type functions, e−αr, have the same radial
dependence as hydrogen orbitals, but, from a computational point of view, they
call for numerical integration. If, on the other hand, Gaussian-type functions,
e−αr

2
, are used, analytical evaluation of integrals is gained to the cost of the loss

of the physical shape of the orbitals. The computational gain in using Gaussian-
type orbitals (gtos) is so high, that in practice, linear combinations of gtos are
used to describe the atomic orbitals. Figure 2.1 illustrates the radial distribution
function for a hydrogen 1s-orbital. The true wave function, i.e., the Slater-type or-
bital (sto), the optimized Gaussian-type orbital (gto), and an optimized orbital
formed by a linear combination of two gtos (the so-called STO-2G basis set) are
plotted for comparison. The plot is only to show the concept, STO-2G is the very
simplest Gaussian-type basis set there is, and the more complex and advanced the
basis sets, the closer the resemblance to the true orbital. A detailed account of
different basis sets is given in Ref. 21.

STO

GTO

STO−2G

Figure 2.1. Illustration of hydrogenic wave functions for fixed angles and varying r.

In the nonrelativistic realm, the use of basis sets is straightforward since the
wave functions are scalar functions. However, in the relativistic theory, special
attention is called for due to the different components in the solutions. Consider
two basis sets — one for the large-component and one for small-component spinors.
From the Dirac equation for a free particle, Eq. (2.25), it is seen that the two basis
sets are connected through the operator σkpk. For basis sets where this connection
is fulfilled, the kinetic energy has a maximum,15 and, in the nonrelativistic limit,
any other connection will underestimate the kinetic energy.16 This gives rise to
so-called kinetically balanced basis sets where the small-component basis sets are
derived from the large-component ones. It should be noted that this also makes
the use of contracted basis sets nontrivial in relativistic calculations, which is why
uncontracted basis sets are widely used.16
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2.2.1 Effective Core Potentials

The cost of an electronic structure calculation using the self-consistent field meth-
ods outlined depends on the number of electrons treated and the size of the basis
sets used. As the number of basis functions increases, so does the computational
cost. However, for heavy elements, most of the electrons are situated in the core
region and do not contribute significantly to most chemical and spectroscopic prop-
erties. Thus, when dealing with such elements, vast savings would be achieved if
the effect of the core electrons could be emulated by a potential leaving only the
valence electrons to be explicitly accounted for. Effective core potentials (ecps)
provide such an approach.

The concept of effective core potentials was introduced by Kahn and Goddard
in 1972.29 They suggested to replace core electrons with an effective potential

U(r) =
∑
l,m

Ul(r)|lm〉〈lm|, (2.30)

where Ul(r) is a potential depending on the angular momentum quantum num-
ber l and |lm〉〈lm| is the angular momentum projection operator (projector). In
principle, the summation over l is infinite, however, in practice Ul(r) ≈ UL(r) for
l > L, where L is taken to be the largest l quantum number in the core.38 Using
the closure relation, this results in the potential

U(r) = UL(r) +
L∑
l=0

l∑
m=−l

[Ul(r)− UL(r)] |lm〉〈lm|, (2.31)

where the first part is referred to as the local part and the second one as the
nonlocal part. In accordance with Kahn et al.28 the potential fitting is applied to
UL(r) and [Ul(r) − UL(r)] separately, resulting in different sets of parameters for
the local part and each l of the nonlocal part according to

r2
[
UL(r)− Nc

r

]
=
∑
i

diLr
ni exp(−ξir2), (2.32)

where Nc is the number of core electrons, and

r2 [Ul(r)− UL(r)] =
∑
i

dilr
ni exp(−ξir2), (2.33)

respectively.
To show ecps at work, calculations on neon and argon have been performed

at the Hartree–Fock level, and the radial distribution function is illustrated in
Figure 2.2. In order to make comparisons between ecp and all-electron calcula-
tions, the all-electron basis set is also used as valence basis set for the ecp. It
is clearly seen that the valence region is properly described by the ecp. Now,
the question arises what happens if an electric field is applied. To show this, a
static electric field, E = Eez, is applied to argon, inducing a dipole moment in
the z-direction, µz. At a field strength E = 0.1 a.u., the all-electron calculation
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(c) Argon 3s-orbital.
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(d) Argon 3pz-orbital.

Figure 2.2. Comparison between the radial distribution functions for the valence or-
bitals in neon and argon obtained with all-electron and ecp Hartree–Fock calculations.

yields µz = 0.656 a.u., whereas the ecp calculation yields µz = 0.653 a.u. Thus,
it is seen that the ecp manages to describe polarization well. The corresponding
3s-orbital is depicted in Figure 2.3, where |ψ|2 has been plotted along the z-axis.

Effective core potentials are of prime interest for heavy elements since these
have large numbers of electrons. It is also in heavy elements that relativistic effects
are prominent — the heavier the atom, the larger the relativistic effect. This
opens for a second important role of ecps, namely to include indirect relativistic
effects. If the potentials are optimized based on relativistic calculations, relativistic
effects will be built into the potential, and, thus, also be included when applied in
nonrelativistic calculations.

In Paper V we have compared nonrelativistic calculations using ecps to non-
relativistic and relativistic all-electron calculations. We come to the conclusion
that ecps outperform nonrelativistic calculations also for sensitive properties such
as the hyperpolarizability. E.g., the errors in hyperpolarizability of meta-di-
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Figure 2.3. |ψ|2 of the 3s-orbital in argon plotted along the z-axis when an electric field
E = Eez, E = 0.1 a.u. has been applied.

iodobenzene compared to full relativistic calculations are reduced from 18% to
7% when an ecp is used to describe iodine in the nonrelativistic calculation. How-
ever, when it comes to for example two-photon absorption, the relativistic effects
introduced by the ecps are no longer sufficient to provide good agreement with
relativistic calculations. Typically, we see comparable integrated cross sections,
but the nonrelativistic calculations are more narrowbanded. In nonrelativistic cal-
culations, triplet excitations are strictly spin-forbidden, whereas at the relativistic
level they attain significant cross sections. This drastically broadens the spectra,
an effect we have attributed to spin-orbit coupling.

2.3 Response Theory

In Section 2.1, the route to solving the wave equation has been outlined for a molec-
ular system described by a time-independent Hamiltonian; now, attention turns
to systems subjected to time-dependent perturbations. Due to the perturbations,
the solutions are no longer stationary and the molecular properties are affected
accordingly. The changes in molecular properties, the responses, due to perturba-
tions can, given a variational wave function, be treated using so-called response
theory, for which the work by Olsen and Jørgensen47 is considered the starting
point. A reformulation of response theory, including not only variational electronic
structure methods but also nonvariational ones, was introduced by Christiansen
et al.8 Recently, response theory has also been extended to the near-resonant and
resonant regimes by Norman et al.42,43 In the following, only the basic ideas of
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response theory will be treated and for further detail the reader is referred to the
references listed above.

Consider a time-dependent perturbation of the form

V̂ t =

∞∫
−∞

V̂ ωe−iωtdω, (2.34)

which is adiabatically switched on at t = −∞. Under the influence of this pertur-
bation, the time-evolution of the electronic reference state can be parameterized
using a unitary exponential operator according to47,56

|0̃(t)〉 = eiκ̂(t)|0〉, κ̂(t) =
∑
a,i

(
κaiâ

†
aâi + κ∗aiâ

†
i âa

)
, (2.35)

where a nonredundant parameterization includes electron transfer from occupied
orbitals (i) to unoccupied orbitals (a). In the relativistic case a also includes
negative energy orbitals (sometimes referred to as positronic orbitals), and the
corresponding transfer amplitudes are denoted κe-e and κe-p, respectively. In order
to solve the time dependence of the state transfer parameters, following the work
by Olsen and Jørgensen,47 the parameters are expanded in a power series over
the perturbation and the Ehrenfest theorem is then solved for each order in the
perturbation. Since the time evolution of the molecular state is now known, the
expectation value of any operator Ω̂ can be expanded in powers of the perturbation,
and the different response functions are identified as the Fourier coefficients in this
expansion,47 i.e.,

〈0̃|Ω̂|0̃〉 =〈0|Ω̂|0〉
+
∫
〈〈Ω̂; V̂ ω1〉〉e−iω1t dω1

+
1
2

∫
〈〈Ω̂; V̂ ω1 , V̂ ω2〉〉e−i(ω1+ω2)t dω1dω2

+
1
3!

∫
〈〈Ω̂; V̂ ω1 , V̂ ω2 , V̂ ω3〉〉e−i(ω1+ω2+ω3)t dω1dω2dω3

+ . . . (2.36)

2.3.1 Electric Field Induced Response Functions

In the applications we focus on, molecules interact with visible or near-visible light,
or electromagnetic radiation. The wavelengths of interest are much more extended
than the molecules considered, and, hence, to good approximation, the electric
vector potential can be assumed to be constant over the entire molecule. This
assumption has two implications for the coupling of the electromagnetic field to the
molecular properties. First, the electric field is constant over the entire molecule
which implies that in an expansion over electric multipole moments, only the
molecular dipole moment will couple to the field. Second, no magnetic interactions
will be included. Therefore, this is called the electric dipole approximation.10
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Having established the electric dipole approximation, to second order, the ex-
pectation value of the dipole moment becomes

〈0̃|µ̂|0̃〉 =〈0|µ̂α|0〉
−
∫
〈〈µ̂α;Fω1 µ̂ω1

β 〉〉e−iω1t dω1

+
1
2

∫
〈〈µ̂α;Fω1 µ̂ω1

β , F
ω2 µ̂ω2

γ 〉〉e−i(ω1+ω2)t dω1dω2

+ . . . , (2.37)

which can be compared to the expression46

µ(t) = µ0 + Fω1ααβ(−ω1;ω1) +
1
2
Fω1Fω2βαβγ(ωσ;ω1, ω2) + . . . , (2.38)

where ωσ = −(ω1 +ω2). It is seen that the first term in the expansion (2.37) is the
permanent dipole moment of the molecule, the second term, the linear response
function, 〈〈µ̂α; µ̂β〉〉, is associated with the polarizability of the system,46

ααβ(−ω;ω) = −〈〈µ̂α; µ̂β〉〉ω, (2.39)

and the third term, the quadratic response function, represents the first-order
hyperpolarizability, or for short hyperpolarizability,46

βαβγ(ωσ;ω1, ω2) = 〈〈µ̂α; µ̂β , µ̂γ〉〉ω1,ω2 . (2.40)

As an illustrative example, consider a lithium hydride (LiH) molecule and
assume an electric field of the form E = Fωz sin(ωt). At a weak electric field
strength (Fωz = 5 · 10−5 a.u.), the dipole moment follows the oscillations of the
electric field, as seen in the mid panel of Figure 2.4. In this plot, the time-
dependent dipole moment is plotted both to linear and quadratic order, however,
the nonlinear contributions are too small to be noticeable. If, on the other hand,
the electric field strength is increased by two orders of magnitude, as shown in the
lower panel, the nonlinear effects are clearly visible. The dipole moment variations
still follow the variations in the electric field, however, in an unsymmetric way.
All the above calculations were carried out in the nonrelativistic realm and far
away from resonances (the frequency of the electric field is 35% of the lowest
singlet state transition frequency of LiH). Figure 2.5 shows βx;z,x(−2ω;ω, ω) for
water. It is seen that in resonant regions, the response theory formulations by
Olsen and Jørgensen47 and Christiansen et al.8 diverges due to the infinite lifetime
approximation. The thin vertical lines indicate the singlet excited state energy
at ωe and the corresponding two-photon resonance at ωe/2. To treat resonant
regions, the finite lifetime formulation by Norman et al.42,43 has to be adopted, as
is illustrated by the solid line in Figure 2.5. It should be noted that in relativistic
calculations, triplet state transitions are allowed, and, thus, the response functions
diverge in these regions as well.
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dependent dipole moment is shown in a weak electric field, and it is seen that the nonlinear
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Through the polarizability, the refraction index and absorption are accessible
from the real and imaginary parts, respectively, and at resonance, the transition
moments for one-photon absorption, M0→f

α are given by46

lim
ω→ωf

(ωf − ω) {−〈〈µ̂α; µ̂β〉〉ω} = M0→f
α 〈f |µ̂β |0〉. (2.41)

Going to the nonlinear regime, analogously, evaluating the residue of the quadratic
response function yields the two-photon transition matrix elements46

lim
ω2→ωf

(ωf − ω2)〈〈µ̂α; µ̂β , µ̂γ〉〉ω1,ω2 = S0→f
αβ (ωσ)〈f |µ̂γ |0〉 (2.42)

whereas from the double residue,

lim
ω1→ωf1
ω2→ωf2

(ωf1 − ω1)(ωf2 − ω2)〈〈µ̂α; µ̂β , µ̂γ〉〉ω1,ω2

=〈0|µ̂β |f1〉〈f1|µ̂α|f2〉〈f2|µ̂γ |0〉, (2.43)

the entity 〈f1|µ̂α|f2〉 is identified as the excited state dipole moment if |f1〉 = |f2〉
and the excited state transition moment if |f1〉 6= |f2〉.

Using the transition moments and transition matrix elements above, the cross
section for a transition, i.e., its probability, can be evaluated. For the one-photon
case this is given by the so-called oscillator strength, and, in order to compare
with gas phase results an orientationally averaged value is given by

δOPA =
2
3
ω0f

∑
α

M0→f
α

[
M0→f
α

]∗
. (2.44)

In the two-photon case the situation is more complex. For a randomly oriented
sample, the two-photon absorption cross section is35,39

δTPA =
1
30

∑
α,β

{
FS0→f

αα

(ωf
2

) [
S0→f
ββ

(ωf
2

)]∗
+GS0→f

αβ

(ωf
2

) [
S0→f
αβ

(ωf
2

)]∗
+ HS0→f

αβ

(ωf
2

) [
S0→f
βα

(ωf
2

)]∗}
, (2.45)

where F , G, and H are factors depending on the polarization of the two photons. If
both photons come from the same monochromatic source, in the linearly polarized
case F = G = H = 2, whereas in the circularly polarized one F = −2 and
G = H = −3. With these properties defined, it is now possible to address the
absorption spectra, and, thus, the properties of the Jablonski diagram as discussed
in Section 1.2.

The quadratic response function and its residues form the foundation for all
papers included in this thesis. Paper II is the most fundamental one, dealing with
the implementation of the quadratic response functions at the four-component
relativistic density functional level of theory. In previous work by Norman and
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Jensen45 the quadratic response function has been implemented at the four-com-
ponent relativistic Hartree–Fock level. With this as a starting point, the extension
to dft, i.e., the contribution from the exchange-correlation functional, is dealt
with.

Papers III and IV deal with the implementation of the residues of the quadratic
response function. The implementations described are based on the quadratic
response function for a Kramers-restricted Hartree–Fock wave function,45 however,
the implementations as such are open-ended and require no modifications to be
compatible with dft, and, thus, the recent implementation described in Paper II.

In Paper V, a detailed investigation of the influence of relativity on quadratic
response functions and two-photon absorption is carried out. The quadratic re-
sponse functions are evaluated at different levels of approximation ranging from
nonrelativistic calculations through effective core potentials to a full four-compon-
ent treatment using the Dirac–Coulomb Hamiltonian. The effects, benefits, and
shortcomings of core potentials has already been discussed in Section 2.2.1.

Finally, in Paper VI, quantum mechanical absorption calculations are used to-
gether with electromagnetic pulse propagation in order to describe the macroscopic
behavior of optically active materials. This will be discussed in greater detail in
Chapter 3, where the essence of this work is put into an illustrative example.



CHAPTER 3

Clamping Levels in Optical Power Limiting

“Erwin kann mit seinem Psi
kalkulieren wie noch nie.
Doch wird jeder gleich einsehn:
Psi lässt sich nicht recht verstehn.”

Erich Hückel

“Erwin with his psi can do
calculations quite a few.
But one thing has not been seen:
Just what does psi really mean?”

English translation by Felix Bloch

Our quantum mechanical calculations treat isolated molecules at zero temperature.
Solvation effects and finite temperatures can be accounted for in different ways, but
has not been included into our investigations. When it comes to the coupling to
phenomena on the macroscopic scale, e.g., the interaction between chromophores
embedded in a host material and an electromagnetic field, little is known. The
framework for the latter situation has been laid down in the work by Gel’mukhanov

Figure 3.1. At time t0, a laser pulse
approaches an optically active material.
As it passes through the material, the
pulse interacts with the materials, and
as it has passed through the material at
time t1, its properties have been altered.

and co-workers.1,2,18 This work introduces
pulse propagation through a medium con-
taining optically active molecules. A proof
of principle is presented in Paper VI and
the following chapter is an illustrative ex-
ample of this concept based on this paper
as well as the continuation thereof.3

At time t0, a laser pulse approaches an
optically active material and at time t1 it
has passed through the material, see Fig-
ure 3.1. If the properties of the incident
laser pulse and the material are known, the
question arises: What are the properties of
the pulse at t1? As the laser pulse prop-
agates through the material, which con-
sists of randomly oriented optically active

23
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Figure 3.2. Simulated clamping levels for the Pt(ii) compound seen in Figure 3.3(e).
The simulations are performed for 1 mm thick sample with a chromophore concentration
of 0.02 M. Two wavelengths, 532 and 694 nm, are considered. On the left, the pulse
duration is 100 fs, whereas on the right it is 10 ns. The need to include excited state
absorption also in the triplet state manifold is clearly seen.

molecules, chromophores, embedded in a host material, its properties are altered.
Assuming that the pulse is a plane wave, this interaction is described by the parax-
ial wave equation27 which couples the amplitude function, E(r, t), of the electric
field to the polarization of the material, P(r, t). The polarization of the material
has, of course, one contribution from the host material and one from the chro-
mophores, where the former is assumed to have no influence on the nonlinear
characteristics of the material. The part associated with the chromophores de-
pends on the molecular properties, and it is here the link to quantum chemistry
enters. The parameters of the Jablonski diagram determined by calculations enters
as input to the Liouville equation, and through the density matrix formulation of
quantum mechanics, the polarization due to the chromophores is determined, as
described in Paper VI. The interplay between the macroscopic laser field and the
microscopic properties of the chromophores is now determined.

In, for example, the work by McKay et al.,36 it is shown experimentally that
π-conjugated platinum(ii) compounds work as broadband power limiters. There-
fore, the Swedish Defence Research Agency has considered materials in this family
of molecules for power limiting applications. One such material that has proved
promising in experiments is the one seen in Figure 3.3(e). Therefore, this molecule
was used as test case in the proof of principle presented in Paper VI. The properties
of the Jablonski diagram, see Figure 1.2, have been evaluated by first principles
quantum chemical calculations, and the simulated clamping levels for different
pulses are shown in Figure 3.2. Two different wavelengths, 532 and 694 nm, are
considered for two different pulse durations, and it is obvious that this particular
chromophore is only suitable for the shorter of the two wavelengths. However, of
greater interest and importance is the results for the longer pulse, see the right
panel. At 532 nm, two utterly different results are achieved depending on whether
or not excited state absorption in the triplet state manifold is included. On the
one hand, as triplets are excluded, linear transmittance is seen, whereas on the



25

(A)

Pt

P(Bu)3

P(Bu)3

(B)

Pt

P(Bu)3

P(Bu)3

NO2O2N

(C)

Pt

P(Bu)3

P(Bu)3

OMeMeO

(D)

Pt

P(Bu)3

P(Bu)3

(E)

S

S
Pt

P(Bu)3

P(Bu)3

(F)

NN
NPt

P(Bu)3

P(Bu)3

N
NN

(G)

Pt

P(Bu)3

P(Bu)3

NN

N N N

N

Figure 3.3. Molecular structure of Pt(ii)-compounds used in clamping level simulations.
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Figure 3.4. Simulated clamping levels for the Pt(ii) compounds in Figure 3.3. The
simulations consider 1 mm thick samples with a chromophore concentrations of 0.02 M
subjected to 10 ns long laser pulses at 532 nm.

other hand, when they are included, a rapid clamping is achieved. This behavior
is attributed to excited state triplet absorption close to 532 nm. The calculated
clamping level is in good agreement with experiments carried out by foi. Unfor-
tunately, these results are classified and a direct comparison cannot be presented.

The above results show the significance of the combined theoretical framework
based on quantum mechanics in conjunction with pulse propagation based on
electrodynamics. Molecular quantum mechanics alone is not able to predict the
clamping levels, e.g., the extent of the importance of the triplet state excitations
cannot be forseen. Now, a direct connection can be made between macroscopic
clamping levels and microscopic properties of the chromophores, which enables
the possibility to design molecular materials suitable for a particular purpose.
Not only does this provide the means to address clamping levels from molecular
properties, but it also enables the ability to find which molecular properties to
look for in order to achieve a certain clamping level in a given frequency range.

The molecule investigated in Paper VI show excellent clamping levels, but ex-
perimentally it is difficult to solvate in order to manufacture doped sol-gel glass
materials. Therefore, an extended survey3 was pursued where a number of similar
chromophores were investigated, see Figure 3.3. Yet again, a sample thickness of
1 mm and a chromophore concentration of 0.02 M was used. The simulated clamp-
ing levels for a 10 ns laser pulse are depicted in Figure 3.4. The seven investigated
materials split up in two distinct groups, where molecules with longer ligand chains
attached to the platinum have lower clamping levels. All four compounds (d, e,
f, and g) have triplet excited states at or close to 532 nm, whereas such features
are missing in the other three compounds.
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This chapter, compiled from our work in Paper VI and Ref. 3, point out the
capabilities of computational chemistry of today. A large number of properties
can be accurately addressed on a computational basis, in many cases to a much
reduced cost, not only financially but also time wise. In the light of this, the
developments presented in this thesis form a natural step toward more accurate
assessments of properties, enabling even greater detail to be treated. Still, large
areas need to be charted out and understood in order properly account for certain
effects, but I think it is safe to say that we are at a point where we approach the
visions of Charles Babbage (see p. 2). The development we see in computational
sciences is rather a useful complement to experiments than, as stated by Comte
(see p. 1), a “degradation of that science”.
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A formulation and implementation of the quadratic response function in the adiabatic
four-component Kohn-Sham approximation is presented. The noninteracting reference state is
time-reversal symmetric and formed from Kramers pair spinors, and the energy density is gradient
corrected. Example calculations are presented for the optical properties of disubstituted
halobenzenes in their meta and ortho conformations. It is demonstrated that correlation and

relativistic effects are not additive, and it is shown that relativity alone reduces the ��̄-response
signal by 62% and 75% for meta- and ortho-bromobenzene, respectively, and enhances the same
response by 17% and 21% for meta- and ortho-iodobenzene, respectively. Of the employed
functionals, CAM-B3LYP shows the best performance and gives hyperpolarizabilities � distinctly
different from B3LYP. © 2008 American Institute of Physics. �DOI: 10.1063/1.2816709�

I. INTRODUCTION

In the presence of external �or internal� perturbing elec-
tromagnetic fields, the molecular polarization �or magnetiza-
tion� can be expressed as a Taylor series in terms of the field
strengths and the coupling parameters relate to spectroscopic
properties �see, for instance, the book by Boyd�.1 Over the
past 20 years, increasingly accurate and efficient computa-
tional methods have been developed to determine the linear
as well as nonlinear molecular response parameters and, to-
day, theoretical calculations are routinely used for the inter-
pretation of experimental spectra as well as for material
functionalization and optimization. If we are concerned with
the correction to the molecular polarization that depends
quadratically on the perturbing electric-field strengths, we
note fundamental nonlinear optical processes, such as the
second-harmonic generation and the electro-optical Pockels
effect, and an important device such as the optical parametric
oscillator. Moreover, static magnetic fields can be used to
induce birefringences in nonchiral systems and, in this con-
text, the quadratic response parameters �or quadratic re-
sponse functions� are pertinent to spectroscopies such as
magnetic circular dichroism and the Faraday effect.

In nonrelativistic quantum chemistry, quadratic response
functions have been formulated and implemented at the elec-
tron uncorrelated level in the so-called time-dependent
Hartree-Fock �HF� approximation2–6—this approximation is
sometimes also referred to as the time-dependent coupled
perturbed Hartree-Fock level or the random phase
approximation—as well as at the electron correlated level

employing second-order Møller-Plesset,7 multiconfiguration
self-consistent field �MCSCF�,2,6 and coupled cluster8–10 ref-
erence states. More recently, the quadratic response function
has also been formulated in the second-order polarization
propagator approach11 and formulated and implemented in
Kohn-Sham density functional theory �DFT�.12,13 Successful
use of these computational techniques has been demonstrated
in numerous publications in the literature and, furthermore, it
has been shown that a residue analysis of the response func-
tions at the electronic transition frequencies of the system
enables the calculation of observables in absorption spec-
troscopies and properties of electronically excited states.2 At
small frequency detunings of the perturbing fields, however,
one must be cautious since the dispersion of the response
functions is severely overestimated in this region due to the
divergences at resonances. This issue has been considered in
a series of publications by Norman et al., and a resonance
convergent formulation of response theory up to second or-
der has been proposed and implemented at the HF, MCSCF,
and DFT levels of theory.14 It stands clear that, in the non-
relativistic realm, there exist sophisticated and highly accu-
rate methodologies and program implementations for the de-
termination of the linear and nonlinear responses in the
electronic density to time-dependent electromagnetic field
perturbations.

In photonics, it is well-known that the use of organome-
tallic compounds can give unprecedented performance in
certain applications,15 but it is clear that, from a theoretical
perspective, the inclusion of one or several heavy atoms calls
for the treatment of relativistic effects in one way or another.
It is possible to consider these effects by perturbation theory
and, in the nonrelativistic framework, to add relativistic cor-a�Electronic mail: panor@ifm.liu.se.
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rections to the perturbation operator that describes the cou-
pling to the external electromagnetic fields. This approach
has been adopted to determine, e.g., phosphorescence,16,17

electron spin resonance,18 and nuclear magnetic resonance
parameters19 but, although these calculations employ qua-
dratic response functions, they are all examples of second-
order molecular properties since one of the perturbation op-
erators in the response functions refers to an intrinsic field. In
order to address a third-order molecular property in a
relativistic-perturbational approach, one would need to
evaluate a cubic response function which is computationally
more complex, and we are not aware of such work. Apart
from the increased computational complexity, a relativistic-
perturbational approach is also limited by the fact that it is
not applicable when relativistic effects are large and, there-
fore, must be included in the zeroth-order Hamiltonian.

There exist a number of ways to include relativistic ef-
fects in the zeroth-order molecular Hamiltonian. One can
replace the core electron densities by effective potentials and
include only the valence electrons in the parametrization of
the wave function.20 The parameters of the effective core
potentials �ECPs� may be optimized against accurate relativ-
istic atomic densities and later used in regular nonrelativistic
calculations. The ECP approach indirectly accounts for sca-
lar relativistic as well as spin-orbit effects in the atomic
cores, and it can be applied to all elements of the Periodic
Table while providing a reasonable accuracy �see Refs.
21–23 for evaluations of this method for third-order molecu-
lar properties�. The obvious limitation is the neglect of direct
�rather than indirect via the core potential� relativistic effects
in the valence electron density. The severity of this approxi-
mation varies strongly for different molecular properties; not
only does it vary with respect to the order of the molecular
property but it also varies substantially for different proper-
ties of the same order. The most striking example when spin-
orbit effects in the valence electron density are of prominent
importance in the calculation of a quadratic response func-
tion is given by the two-photon absorption spectra �which
relate to a first-order residue of the quadratic response func-
tion�. It was demonstrated by Henriksson et al.24 that even
for a light element such as neon, the inclusion of spin-orbit
interactions is necessary to obtain a qualitatively correct two-
photon absorption spectrum.

At the all-electron level of theory, spin-free scalar rela-
tivistic corrections may be added to the one-electron Hamil-
tonian and, with the neglect of the picture change in the
perturbation operators, response properties can be deter-
mined without further modifications of the nonrelativistic
code. In this way, the hyperpolarizabilities of a series of
group IIb sulfides were determined25 in the spin-averaged
Douglas-Kroll approximation, as introduced by Hess,26,27

and the same approach has later been benchmarked against
four-component calculations and then showing significant
discrepancies for the hyperpolarizabilities of iodine and tel-
lurium hydrides.21 Full inclusion of scalar relativistic and
spin-orbit effects in the calculation of third-order molecular
properties was accomplished with the implementation of the
quadratic response function �and its first- and second-order
residues� in the time-dependent four-component Hartree-

Fock approximation.24,28,29 While accurate with respect to
relativistic effects, it is expected that the applicability of this
method is severely limited due to the large effects of electron
correlation on nonlinear response properties and since it is
inappropriate to treat relativity and electron correlation sepa-
rately. In the present work, we therefore develop and imple-
ment the quadratic response function in the time-dependent
four-component Kohn-Sham DFT approximation. Our work
should be seen as an extension of the previous mentioned
work in the HF approximation24,28,29 as well as the work on
the linear response function in the DFT approximation.30

In Sec. II A, we give a brief review of the four-
component Kohn-Sham approximation and the derivation of
the quadratic response function but, since these general as-
pects are largely covered in our previous work,29,30 we focus
primarily on a presentation of the details of the implementa-
tion that are unique to the extension made here �see
Sec. II B�. In Sec. III, we illustrate our implementation with
an example calculation of the first-order electric-dipole hy-
perpolarizability for dibromo- and di-iodo-substituted ben-
zene using a set of standard density functionals. We empha-
size that although the implementation is completely general,
we here present results for nonoscillating external perturba-
tions which require functionals of the charge density only.
For dynamic properties, we would like to perform a detailed
investigation of also adding the induced noncollinear magne-
tization as a functional variable, and this work is in progress.

II. THEORY AND METHODOLOGY

A. Time-dependent four-component Kohn-Sham
approximation

In the time-dependent four-component Kohn-Sham DFT
approximation, the noninteracting reference system is de-
scribed by a determinant of spinors �p�r�. The time-reversal
symmetric reference state of the isolated system �0s� is varia-
tionally optimized with the use of an electronic Hamiltonian
for the interacting system in which the kinetic energy is
given by the free-particle Dirac Hamiltonian and the
electron-electron repulsion is approximated by the instanta-
neous Coulomb interaction. This approximate form of the
two-electron part of the relativistic Hamiltonian is improved
on by the inclusion of the Gaunt term, or the full Breit inter-
action, but the introduction of current-current interactions in
DFT requires a general consideration before introduced
here.31 Time-reversal symmetry of �0s� is enforced by the
occupation of Kramers pairs of spinors �corresponding to the
closed-shell state in a nonrelativistic theory�—a pair of
spinors are related by the time-reversal operator,

�p̄�r� = K̂�p�r�, K̂ = �02 − I2

I2 02
�K̂0, �1�

where K̂0 denotes the complex conjugation operator. The ei-
genvalues of the spinors are divided into two sets that are
separated by circa twice the electron rest energy, and spinors
corresponding to the upper and lower sets are sometimes
referred to as electronic and positronic orbitals, respectively
�although they all represent electron wave functions�. The
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reference state includes only electronic orbitals and is opti-
mized in a minmax sense.32

When subjected to an external time-dependent electro-
magnetic field, the reference state becomes time dependent
in a way that is not described by a trivial phase factor but
involves electronic transitions to virtual orbitals. We param-
etrize this time dependence in a nonredundant and unitary
way as follows:2,31

�0̃s�t�� = exp�− �̂�t���0s�, �̂�t� = �aiâa
†âi − �ai

* âi
†âa. �2�

Here and in the following, we have made use of the Einstein
summation convention for repeated indices and
a ,b , . . . , i , j , . . ., and p ,q , . . . are indices of virtual, occupied,
and general molecular orbitals, respectively. In general, the
summation over virtual orbitals in Eq. �2� includes the
positronic orbitals and the corresponding electron transfer
amplitudes are at times denoted by �ai

− �to be distinguished
from rotations among electronic orbitals with amplitudes
�ai

+ �. In calculations of electric-field induced valence proper-
ties, such as the electric-dipole hyperpolarizability, the effect
of redressing of the electronic states due to the inclusion of
the �ai

− parameters in the propagator is small and can be
ignored with the benefit of memory savings.23

For weak, periodic external fields, we can use the
quasienergy formalism to determine the time dependence of
the � parameters33—a technique which was also used for the
derivation and implementation of the linear response func-
tion at this level of theory30 �see, however, Ref. 34 for a
discussion about the validity of this approach�. The relevant
time-averaged Kohn-Sham quasienergy functional can be
written as

Q��� = Ts��� + V��� + J��� + Qxc��� + Ss��� , �3�

where the time-dependent electron density is introduced as �
and depends implicitly on the � parameters. The response
functions are defined as derivatives of the quasienergy with
respect to the Fourier amplitudes of the external electromag-
netic field, and the third-order response, or the quadratic re-
sponse function, is given by

		Â;B̂,Ĉ���B,�C
= 
 d3Q

d�A��A�d�B��B�d�C��C�



�=0
. �4�

In evaluating this derivative, we note that the sum of terms in
Eq. �3� excluding Qxc corresponds formally to Hartree-Fock
theory without exchange interaction. We can, therefore, ben-
efit from the implementation of the quadratic response func-
tion reported in Ref. 29 and use it with a mere turnoff of the
exchange interaction �or partial turnoff for hybrid function-
als� together with the addition of the contribution from Qxc.
We will adopt the adiabatic approximation and employ the
time-dependent exchange-correlation functional as a substi-
tute for Qxc,

Qxc��� → Exc��� =� exc��,	�d
 . �5�

The energy density is here assumed to be a function of � and
the square norm of the electron density gradient 	=�� ·��,
and a time averaging is implied here as well. The time aver-

aging will impose that the response function �Eq. �4�� is non-
zero only when �A=−��B+�C�. In the next section, we will
present the detailed expressions needed for the implementa-
tion of the part in Eq. �4� that is due to Exc.

B. Implementation of the exchange-correlation
contribution to the quadratic response function

In the evaluation of the third-order derivative of Exc with
respect to the amplitudes of the external fields, we will use
chain rule differentiation of the energy density e�� ,	�. We
will view the electron density as dependent on the � param-
eters and determine the response of the latter to the external
perturbation from the variational condition �Q���=0. Since
the 2n+1 rule applies in the present case, it will be sufficient
to determine the first-order response in � with respect to
���� in order to determine the quadratic response function.
We note that the details and code implementation concerned
with the determination of this linear response have already
been considered in Ref. 30. The structure of the implemen-
tation of the quadratic response function at the Hartree-Fock
level is such that first, the formation of a generalized elec-
tronic gradient

�

��ai

 d2Exc

d�Bd�C



�=0
�6�

is made and, thereafter, this gradient is contracted with the
response of the �ai parameters with respect to the external
field.29 In order to comply with this structure, we therefore
seek an explicit expression for the quantity in Eq. �6�.

This exchange-correlation contribution will be added to
the generalized gradient as due to the Coulomb interaction
and which is denoted as E�3�NBNC in Ref. 29. Let us now
turn to the differentiation of Exc and first consider the partial
derivatives that will appear. In doing so, we will make use of
the fact that �→0 implies that �→0 and vice versa and,
although partial differentiation is to be made independently
for �ai and �ai

* , we restrict the presentation to include only
one of them.

With the use of the density operator,

�̂ = �pqâp
†âq, �pq = �p

†�r��q�r� , �7�

the electron density can be written as

��r� = 	0̃s��̂�0̃s� = �pq	0s�e�̂âp
†âqe−�̂�0s� . �8�

Expanding the density matrix elements with use of the
Baker-Campbell-Hausdorff expansion yields

� = �
n=0




��n�, ��n� =
�pq

n!
	0s��̂nâp

†âq�0s� , �9�

where the action of the superoperator �̂ is the formation of a

commutator according to �̂Â= ��̂ , Â�. The differentiation of
the density with respect to the external fields gives

�ABC¯
ª 
 �n�

��A��B��C¯



�=0
= �ai

BC¯��ai

��A
, �10�

where we have introduced

024105-3 The relativistic four-component Kohn-Sham approximation J. Chem. Phys. 128, 024105 �2008�

Downloaded 11 Jan 2008 to 130.236.162.180. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



42 Paper I

�ai
BC¯

ª

�n��n�

��ai��bj��ck¯

��bj

��B

��ck

��C
¯ . �11�

In order to account for gradient-corrected density function-
als, we also introduce the following partial derivatives of 	
with respect to the external field:

	B
ª 
 �	

��B



�=0
= 2 � � · ��B, �12�

	BC
ª 
 �2	

��B��C



�=0
= 2��� · ��BC + ��B · ��C� . �13�

The numerical grid-integration kernel in the program as-
sumes the integrand to be written on the form

s�pq + v · ��pq,

where the scalar s and vectorial v functions as well as the
atomic orbital density matrix corresponding to �pq are to be
specified for a given property integration. Let us illustrate
how this works for the electronic gradient,


 �Exc

��ai
* 


�=0

=� � �exc

��

 ��

��ai
* 


�=0

+
�exc

�	

 �	

��ai
* 


�=0
�d


= −� fxc;aid
 , �14�

in which appears the exchange-correlation part of the Kohn-
Sham matrix,

fxc;pq = sf�pq + v f · ��pq,

�15�

sf =
�exc

��
, v f =

1

����
�exc

�����
� � .

Continuing to linear response, we get

�

��ai
* 
 �Exc

��B



�=0
= −� �fxc;ai

B + gxc;ai
�B� �d
 , �16�

where the integrand consists of the exchange-correlation part
of the one-index transformed Kohn-Sham matrix,

fxc;pq
B = sf�pq

B + v f · ��pq
B , �17�

and a remainder that equals to

gxc;pq
�B� = sg�pq + vg · ��pq,

sg
�B� =

�2exc

��2 �B +
�2exc

���	
· 2��� · ��B� , �18�

vg
�B� = � �2exc

���	
�B +

�2exc

�	2 · 2��� · ��B�� · 2 � �

+
�exc

�	
· 2 � �B.

We will reach our desired expression for the quadratic
response by performing a differentiation of Eq. �16� with
respect to the external field. We collect the final result of this
derivation in the form

�

��ai
* 
 d2Exc

d�Bd�C



�=0
= −� �fxc;ai

BC + gxc;ai
�C�B + gxc;ai

�B�C + hxc;ai
�BC��d
 ,

�19�

where we recognize the doubly one-index transformed
exchange-correlation part of the Kohn-Sham matrix fxc;pq

BC as
well as matrices gxc;ai

�C�B and gxc;ai
�B�C which are one-index trans-

formed versions of Eq. �18� with respect to B and C, respec-
tively. The remainder is collected into

hxc;pq
�BC� = sh�pq + vh · ��pq,

sh = � PB,C
 �3exc

��3 �B�C + 2
�3exc

��2�	
�B · 2��� · ��C�

+
�3exc

���	2 · 2��� · ��B� · 2��� · ��C� +
�2exc

��2 �BC

+
�2exc

���	
· 2���� · ��BC� + ���B · ��C��� , �20�

vh = � PB,C
� �3exc

�	3 · 2��� · ��B� · 2��� · ��C�

+ 2
�3exc

���	2�B · 2��� · ��C� +
�3exc

��2�	
�B�C +

�2exc

���	
�BC

+
�2exc

�	2 · 2���� · ��BC� + ���B · ��C��� · 2 � �

+ � �2exc

���	
�C +

�2exc

�	2 · 2��� · ��C�� · 4 � �B

+
�exc

�	
· 2 � �BC� ,

where the operator �PB,C denotes the sum over permutations
between B and C. An implementation of Eq. �19� has been
added to the DIRAC program35 and below, we will present an
example calculation of the electric-dipole hyperpolarizability
which corresponds to a quadratic response function �Eq. �4��
evaluated for electric-dipole operators. The implementation
is general in the sense that it merely assumes the perturba-
tions to be due to one-electron operators and our work is,
therefore, in principle, applicable to a series of electromag-
netic properties. However, the introduction of a magnetic
perturbation breaks the time-reversal symmetry of the system
and requires the consideration of spin polarization in the for-
malism. In fact, even the application of time-dependent elec-
tric fields will induce electronic currents and thereby mag-
netic fields, so also the evaluation of dynamic polarizabilities
should take spin polarization into account. We will return to
this topic in a future work.

III. EXAMPLE CALCULATIONS

A. Computational details

All calculations in the present work were performed for
molecular structures that were optimized at the one-
component Kohn-Sham DFT level of theory using the hybrid
B3LYP exchange-correlation functional;36 for H, C, and Br,
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the 6-31G* basis set was used,37,38 and for iodine, the
Stuttgart ECP was used.39 Structure optimizations were per-
formed in the C2v point group with the GAUSSIAN program.40

The molecules are placed with the z axis as principle axis
and in the yz plane with the heavy atoms along the negative
z direction.

The all-electron property calculations were performed
with a locally modified version of the DIRAC program,35 and
those where an ECP was used for Br or I were performed
with a version of the DALTON program41 to which an imple-
mentation of the Coulomb attenuated B3LYP �Ref. 42�
�CAM-B3LYP� has been added.43 The property calculations
based on single determinant reference states �all-electron as
well as ECP based� were performed with fully uncontracted
basis sets that are based on the exponents from Sadlej’s po-
larization basis set44 with further addition of polarization and
diffuse functions. The basis sets were augmented using the
formula

	N+j = � 	N

	N−1
� j

	N, j � �1,Naug� , �21�

where Naug is the number of augmentation functions added
and 	N and 	N−1 refer to the two most diffuse exponents in
the original basis sets. The only exception to this rule is the
f shell of the iodine basis set, which was not augmented. To
the basis set of bromine, we added four f functions based on
the four most diffuse p exponents in the original basis set.
The sizes of the singly augmented large component basis sets
used in the property calculations were �7s5p�, �11s7p5d�,
�16s13p10d4f�, and �20s16p13d4f� for H, C, Br, and I, re-
spectively, and the small-component basis functions were
generated from those of the large component with the use of
the restricted kinetic-balance condition. In all four-
component calculations, we have ignored the interactions be-
tween the small component densities, i.e., the �SS �SS� inte-
grals. This approximation has virtually no influence on the
presented results, as demonstrated in Ref. 23, and will not be
further discussed here. All DFT functionals were employed
self-consistently and with their proper derivatives to the re-
quired orders in the perturbations.

For comparison, wave function correlated results were
obtained at the coupled cluster level with inclusion of single
and double electron excited configurations �CCSD�. For
these calculations, we adopted the contracted Sadlej basis
set44 for hydrogen and carbon but augmented with the same
diffuse functions as described above. For bromine and io-
dine, we employed the valence basis set of the Stuttgart
ECPs �Ref. 39� but augmented and polarized using the func-
tions from the Sadlej basis set and Eq. �21�. The sizes
of the heavy atom basis sets in the CCSD calcula-
tions were �6s6p5d4f� / �4s4p3d2f� �bromine� and
�6s6p8d2f� / �4s4p3d1f� �iodine�.

B. Results and discussion

With a molecular dipole moment aligned with the z axis,
the relevant experimental observable for second-harmonic

generation is ��̄,45 where

�̄�− 2�;�,�� =
1

5 �
�=x,y,z

��z�� + 2��z�� . �22�

In previous studies, we have shown that relativistic effects in
heavy atom substituted �-conjugated systems are pro-
nounced for the dipole moment as well as the first-order
hyperpolarizability �but not for the linear polarizability�;22,23

for bromobenzene, the effects are predominantly scalar rela-
tivistic in nature but for iodobenzene, scalar relativistic and
spin-orbit effects are about equally important.23 Whereas
changes due to relativity in the dipole moment can be attrib-
uted to changes in the chemical bond polarities, the effects
on the hyperpolarizabilities are not as easily interpreted. The
sum-over-states expression for �, which reads as

�����− ��;�1,�2�

= �−2 � P−�,1,2�
k,l

�
	0��̂��k�	k��̄̂��l�	l��̂��0�

��k − �����l − �2�
, �23�

reveals an intricate dependence of the hyperpolarizability on
interexcited state transition moments and excited-to-ground
state dipole moment differences, in addition to a dependence
on the linear absorption spectrum via the ground-to-excited
state transition dipole moments and excitation energies. The
permutation operator introduced in Eq. �23� permutes the
pairs of dipole moment operators and optical frequencies

��̂� ,−���, ��̂� ,�1�, and ��̂� ,�2�, and �̄̂ denotes the electric-
dipole fluctuation operator. One thing that becomes clear
from the sum-over-states expression is the separation be-
tween scalar relativistic and spin-orbit effects, since the latter
can be attributed to the coupling between states in the singlet
and triplet manifolds. The nonrelativistic and relativistic lin-
ear absorption spectra presented in Ref. 23 show significant
spin-forbidden absorption only for the iodobenzenes, and
scalar relativistic and spin-orbit effects on � are also of com-
parable magnitude in this case, whereas the spin-orbit effects
are small on the same property for the bromobenzenes.

The same argumentation can be made for the linear po-
larizability. In fact, � depends only on the observables in the
linear absorption spectrum, namely, transition energies and
intensities. The absence of relativistic effects that are seen in
Tables I and II for this property is, therefore, puzzling but
has been previously noted also for the thiophene homologs
which serve as important building blocks in optical
materials.22

In the present work, we focus at a formulation of the
quadratic response function at the electron correlated four-
component level of theory. We give here a presentation of the
response function which is quite different from the sum-
over-states expression in Eq. �23� but is rather seen as energy
derivatives. Since the correlation energy depends on the elec-
tron density, its value per electron will basically be larger, the
heavier the atom. What makes property calculations at the
Hartree-Fock level at all reasonable for heavy atoms are the
facts that the molecular property is a measure of the energy
difference with respect to external fields and that the induced
fluctuations in the core electron densities are very small—in
the valence region, where density fluctuations are larger, the
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effects of electron correlation are smaller. As a rule of thumb
for the polarizability of molecules containing first- and
second-row elements, the isotropic value is typically under-
estimated by some 5% at the Hartree-Fock level of theory,
whereas anisotropies suffer from larger errors.46 For the hy-
perpolarizabilities, on the other hand, the effects of electron
correlation are known to be both large and unsystematic.

In Tables I and II, we present the optical properties of
disubstituted bromobenzene and iodobenzene, respectively,
in their meta and ortho conformations. We employ a series of
four standard density functionals in the correlated four-
component calculations, namely, local-density approximation
�LDA�, BLYP, B3LYP, and CAM-B3LYP, and the ordering
of functionals in the tables reflects the consensus of increas-
ing accuracy as due to gradient and exact exchange correc-

tions. An apparent consequence of the use of the more so-
phisticated density functionals is the improved quality of the
orbital energies and, since the difference in orbital energies
between virtual and occupied orbitals appears on the diago-
nal of the electronic Hessian, it will correspond to improved
excitation energies in the response function approach as well.
In Ref. 47, it was also well illustrated how the inclusion of
exact exchange in the density functional affects linear re-
sponse calculation of excitation energies. It is the exact ex-
change that provides the Coulomb attraction between the
hole and the electron in these calculations, and the more
spatially separated the hole and electron orbitals are, the
greater the need for exact exchange in the functional is. The
present systems are by no means extreme charge-transfer
systems but, at the same time, it is clear that the halogen

TABLE I. Optical properties for disubstituted bromobenzenes at the Hartree-Fock, Kohn-Sham, and post-HF
levels of theory. Different exchange-correlation functionals are considered for the inclusion of electron corre-
lation effects. All quantities are given in a.u.

Method �z �xx �yy �zz �zxx �zyy �zzz

meta-dibromobenzene
LDA NR 0.6149 72.79 166.1 124.2 26.13 −168.8 32.79

ECP 0.5728 73.93 168.2 125.5 32.10 −167.4 44.76
4C 0.5903 73.00 166.5 124.5 29.04 −163.4 41.00

BLYP NR 0.6105 73.62 167.2 125.1 29.96 −155.6 44.22
ECP 0.5902 73.60 167.0 125.0 30.82 −147.1 47.97
4C 0.5864 73.85 167.6 125.3 33.13 −149.8 53.01

B3LYP NR 0.6435 71.86 161.2 121.7 21.16 −117.7 36.31
ECP 0.6203 72.01 161.4 121.8 22.92 −112.6 40.95
4C 0.6186 72.03 161.5 121.9 23.63 −112.6 43.41

CAM-B3LYP NR 0.6626 70.85 156.5 119.4 17.76 −88.99 34.92
ECP 0.6333 71.22 157.1 119.7 20.07 −85.60 40.32
4C 0.6361 71.00 156.8 119.6 19.81 −84.30 41.08

HF NR 0.7482 69.78 150.5 115.8 3.57 −48.97 27.85
ECP 0.7291 69.9 150.8 116.0 4.91 −47.30 31.27
4C 0.7218 69.81 150.8 115.9 4.55 −45.50 31.64

CCSD ECP 0.6344 72.18 156.6 120.3 12.87 −82.70 33.06
ortho-dibromobenzene

LDA NR 0.8925 71.93 131.4 150.9 41.73 −62.10 −164.4
ECP 0.8208 73.00 132.9 152.3 50.83 −55.44 −152.1
4C 0.8513 72.14 131.6 151.0 46.44 −56.28 −152.8

BLYP NR 0.8814 72.71 132.1 151.6 47.09 −52.58 −148.8
ECP 0.8479 72.70 132.0 151.5 48.14 −46.90 −138.6
4C 0.8409 72.94 132.4 151.9 52.40 −46.22 −136.6

B3LYP NR 0.9395 71.01 128.3 147.1 33.37 −39.78 −113.5
ECP 0.9008 71.16 128.4 147.2 35.71 −35.25 −105.3
4C 0.8977 71.18 128.5 147.2 37.29 −34.45 −103.3

CAM-B3LYP NR 0.9739 70.03 125.5 143.5 27.66 −28.81 −80.26
ECP 0.9248 70.37 125.9 143.9 30.96 −24.62 −72.58
4C 0.9296 70.17 125.7 143.7 31.01 −23.97 −71.05

HF NR 1.1147 69.10 121.4 138.8 6.72 −9.99 −35.62
ECP 1.0826 69.21 121.6 138.9 8.45 −7.56 −31.41
4C 1.0709 69.13 121.5 138.9 8.30 −6.61 −29.79

CCSD ECP 0.9310 71.34 126.5 144.1 20.50 −28.65 −82.57
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atoms will play the role of donors in excitations to the �*

orbitals. We, therefore, anticipate that the use of the CAM-
B3LYP can have an impact on results, and we would argue
that these results are the best ones at the four-component
level of theory. We would also like to draw attention to the
systematic decrease in � when comparing results obtained
with the series of functionals BLYP, B3LYP, and CAM-
B3LYP. This trend is directly coupled to an increasing por-
tion of exact exchange and thereby increased excitation en-
ergies of the system.

When measured against the four-component CAM-
B3LYP results, the correlation contributions to �zxx, �zyy, and
�zzz of meta-bromobenzene amount to 15.3, −38.8, and
9.4 a.u., respectively, and for meta-iodobenzene, the corre-
sponding values are 15.7, −46.4, and 8.5 a.u. In both cases,

there is thus a strong error cancellation for the Hartree-Fock

values of the observable �̄ since electron correlation lowers
the value of the zyy component but increases the values of
the other two components. This illustrates how unsystematic
correlation effects can be for the first-order hyperpolarizabil-
ity. On the other hand, we note that the correlation effects on
the hyperpolarizabilities of the two meta systems are close in
magnitude. That again indicates that it is the correlation en-
ergy in the valence region that matters for this property, and
that this energy is almost the same in the two systems. If we
make the same comparison for the two ortho systems, we see
correlation contributions of 22.7, −17.4, and −41.3 a.u. for
the three nonzero � components of bromobenzene and 24.1,
−27.6, −46.9 a.u. for the three components of iodobenzene.

TABLE II. Optical properties for disubstituted iodobenzenes at the Hartree-Fock, Kohn-Sham, and post-hF
levels of theory. Different exchange-correlation functionals are considered for the inclusion of electron corre-
lation effects. All quantities are given in a.u.

Method �z �xx �yy �zz �zxx �zyy �zzz

meta-di-iodobenzene
LDA NR 0.6337 94.24 214.0 149.1 85.17 −175.1 140.6

ECP 0.5674 95.86 216.1 150.6 96.74 −166.0 167.0
4C 0.5661 94.61 215.1 149.5 96.78 −151.2 171.4

BLYP NR 0.6240 95.86 216.0 150.5 95.56 −150.4 166.4
ECP 0.5885 95.16 214.3 149.7 96.71 −128.2 174.8
4C 0.5575 96.32 217.4 151.1 108.7 −125.6 200.3

B3LYP NR 0.6501 93.55 208.1 146.5 79.16 −88.74 151.1
ECP 0.6076 93.30 207.4 146.2 82.61 −73.72 162.0
4C 0.5806 93.79 209.9 146.9 89.19 −64.85 179.0

CAM-B3LYP NR 0.6618 91.88 201.2 143.4 68.39 −37.66 141.1
ECP 0.6057 92.17 201.6 143.7 73.46 −25.95 155.5
4C 0.5867 91.99 202.2 143.7 76.96 −15.23 165.7

HF NR 0.7537 91.23 196.1 140.5 56.17 12.08 140.0
ECP 0.7074 91.14 196.5 140.5 59.36 22.27 150.5
4C 0.6793 90.91 197.2 140.5 61.26 31.21 157.2

CCSD ECP 0.5822 96.54 205.1 147.6 80.97 −46.26 180.7

ortho-di-iodobenzene
LDA NR 0.8877 92.07 166.3 182.7 125.0 −42.42 −46.42

ECP 0.7777 93.59 167.9 184.0 142.3 −26.39 −16.02
4C 0.7766 92.45 166.6 182.9 143.9 −19.06 −2.32

BLYP NR 0.8639 93.49 167.7 183.9 136.7 −24.59 −16.73
ECP 0.8071 92.87 166.1 182.7 138.2 −8.59 5.99
4C 0.7544 93.94 168.1 184.2 157.9 1.05 29.70

B3LYP NR 0.9103 91.31 162.4 178.6 113.4 1.21 25.32
ECP 0.8411 91.11 161.6 178.0 118.1 14.86 45.94
4C 0.7962 91.57 162.7 178.8 129.7 25.04 67.06

CAM-B3LYP NR 0.9336 89.74 158.1 174.1 97.05 22.97 66.22
ECP 0.8415 90.03 158.2 174.2 104.6 36.07 86.91
4C 0.8105 89.88 158.3 174.3 110.4 45.22 104.3

HF NR 1.0740 89.19 154.3 170.2 78.37 53.66 123.4
ECP 0.9973 89.13 154.2 170.1 82.94 65.23 139.0
4C 0.9519 88.93 154.3 170.4 86.26 72.80 151.2

CCSD ECP 0.8023 94.14 162.7 177.7 117.3 23.97 89.22
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We have argued that the ordering of DFT results in the
tables reflects the quality. In order to get a more objective
measure of the performance of the various functionals, we
have also determined the optical properties using a nonrela-
tivistic wave function correlated approach in conjunction
with the Stuttgart relativistic ECPs. Due to the computational
cost associated with the CCSD method, we are forced to
employ a reduced basis set and, given the fact that the basis
set requirements are stronger in wave function than in den-
sity functional approaches, we cannot use the CCSD results
as benchmarks. Furthermore, the lack of inclusion of relativ-
istic effects in the valence region will make the results based
on ECPs error prone for the iodobenzenes. For the �-tensor
elements of bromobenzenes, the largest discrepancy between
ECP and four-component results at the CAM-B3LYP level is
as small as 1.5 a.u. �or 2%�, whereas for the iodobenzenes,
this error bar is 17.4 a.u. It is, therefore, reasonable to use the
bromobenzene CCSD results for the evaluation of the vari-
ous density functionals. For each individual � component of
the bromobenzenes, the best agreement with the CCSD re-
sults is obtained with use of the CAM-B3LYP functional but,
at the same time, it is clear that discrepancies between the
correlated results can be as large as 10 a.u. �see the zzz com-
ponent of ortho-bromobenzene�.

The calculations of the hyperpolarizabilities of the ha-
lobenzenes amply demonstrate that electron correlation ef-
fects can be very large for this property. Of greater concern
to the present work, however, is the fact that relativistic ef-
fects on the hyperpolarizability are substantial for the bro-
mobenzenes and large for the iodobenzenes. The develop-
ment of electron correlated propagator methods with proper
inclusion of relativity is particular important since the two
effects are not additive. Without exception for the � tensor,
the relativistic effects at the correlated level of theory exceed
those at the uncorrelated level of theory, e.g., the relativistic
effects for �zxx, �zyy, and �zzz at the CAM-B3LYP level
amount to 13.3, 22.2, and 38.1 a.u., respectively, whereas at
the Hartree-Fock level, the corresponding values are 7.9,
19.2, and 27.8 a.u. The relativistic corrections are without

exception positive, thereby increasing the value of �̄.

IV. CONCLUSIONS

A derivation and implementation of the quadratic re-
sponse function at the four-component density functional
level of theory has been presented. The adiabatic, Kramers-
restricted Kohn-Sham approximation has been adopted with
consideration made of gradient-corrected functionals. We ex-
emplify the significance of this work with calculations of the
optical properties of disubstituted halobenzenes and thereby
illustrate internal heavy atom effects on the hyperpolariz-
abilities in �-conjugated systems. Our best results are ob-
tained with the use of the Coulomb attenuated B3LYP
functional,42 which here provides notably different hyperpo-
larizability values from B3LYP. It is shown that correlation
as well as relativistic effects on � are large for the systems
under investigation. Relativity alone reduces the

��̄-response signals by 62% and 75% for meta- and ortho-
bromobenzene, respectively, and enhances the same response

by 17% and 21% for meta- and ortho-iodobenzene, respec-
tively �these values are based on the CAM-B3LYP results�.
The results in the present work also demonstrates the well-
known fact that correlation and relativistic effects are not
additive and that our work is called for.
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A formulation and implementation of the quadratic response function in the adiabatic
four-component Kohn-Sham approximation is presented. The noninteracting reference state is
time-reversal symmetric and formed from Kramers pair spinors, and the energy density is gradient
corrected. Example calculations are presented for the optical properties of disubstituted
halobenzenes in their meta and ortho conformations. It is demonstrated that correlation and

relativistic effects are not additive, and it is shown that relativity alone reduces the ��̄-response
signal by 62% and 75% for meta- and ortho-bromobenzene, respectively, and enhances the same
response by 17% and 21% for meta- and ortho-iodobenzene, respectively. Of the employed
functionals, CAM-B3LYP shows the best performance and gives hyperpolarizabilities � distinctly
different from B3LYP. © 2008 American Institute of Physics. �DOI: 10.1063/1.2816709�

I. INTRODUCTION

In the presence of external �or internal� perturbing elec-
tromagnetic fields, the molecular polarization �or magnetiza-
tion� can be expressed as a Taylor series in terms of the field
strengths and the coupling parameters relate to spectroscopic
properties �see, for instance, the book by Boyd�.1 Over the
past 20 years, increasingly accurate and efficient computa-
tional methods have been developed to determine the linear
as well as nonlinear molecular response parameters and, to-
day, theoretical calculations are routinely used for the inter-
pretation of experimental spectra as well as for material
functionalization and optimization. If we are concerned with
the correction to the molecular polarization that depends
quadratically on the perturbing electric-field strengths, we
note fundamental nonlinear optical processes, such as the
second-harmonic generation and the electro-optical Pockels
effect, and an important device such as the optical parametric
oscillator. Moreover, static magnetic fields can be used to
induce birefringences in nonchiral systems and, in this con-
text, the quadratic response parameters �or quadratic re-
sponse functions� are pertinent to spectroscopies such as
magnetic circular dichroism and the Faraday effect.

In nonrelativistic quantum chemistry, quadratic response
functions have been formulated and implemented at the elec-
tron uncorrelated level in the so-called time-dependent
Hartree-Fock �HF� approximation2–6—this approximation is
sometimes also referred to as the time-dependent coupled
perturbed Hartree-Fock level or the random phase
approximation—as well as at the electron correlated level

employing second-order Møller-Plesset,7 multiconfiguration
self-consistent field �MCSCF�,2,6 and coupled cluster8–10 ref-
erence states. More recently, the quadratic response function
has also been formulated in the second-order polarization
propagator approach11 and formulated and implemented in
Kohn-Sham density functional theory �DFT�.12,13 Successful
use of these computational techniques has been demonstrated
in numerous publications in the literature and, furthermore, it
has been shown that a residue analysis of the response func-
tions at the electronic transition frequencies of the system
enables the calculation of observables in absorption spec-
troscopies and properties of electronically excited states.2 At
small frequency detunings of the perturbing fields, however,
one must be cautious since the dispersion of the response
functions is severely overestimated in this region due to the
divergences at resonances. This issue has been considered in
a series of publications by Norman et al., and a resonance
convergent formulation of response theory up to second or-
der has been proposed and implemented at the HF, MCSCF,
and DFT levels of theory.14 It stands clear that, in the non-
relativistic realm, there exist sophisticated and highly accu-
rate methodologies and program implementations for the de-
termination of the linear and nonlinear responses in the
electronic density to time-dependent electromagnetic field
perturbations.

In photonics, it is well-known that the use of organome-
tallic compounds can give unprecedented performance in
certain applications,15 but it is clear that, from a theoretical
perspective, the inclusion of one or several heavy atoms calls
for the treatment of relativistic effects in one way or another.
It is possible to consider these effects by perturbation theory
and, in the nonrelativistic framework, to add relativistic cor-a�Electronic mail: panor@ifm.liu.se.

THE JOURNAL OF CHEMICAL PHYSICS 128, 024105 �2008�

0021-9606/2008/128�2�/024105/9/$23.00 © 2008 American Institute of Physics128, 024105-1

Downloaded 11 Jan 2008 to 130.236.162.180. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



52 Paper II

rections to the perturbation operator that describes the cou-
pling to the external electromagnetic fields. This approach
has been adopted to determine, e.g., phosphorescence,16,17

electron spin resonance,18 and nuclear magnetic resonance
parameters19 but, although these calculations employ qua-
dratic response functions, they are all examples of second-
order molecular properties since one of the perturbation op-
erators in the response functions refers to an intrinsic field. In
order to address a third-order molecular property in a
relativistic-perturbational approach, one would need to
evaluate a cubic response function which is computationally
more complex, and we are not aware of such work. Apart
from the increased computational complexity, a relativistic-
perturbational approach is also limited by the fact that it is
not applicable when relativistic effects are large and, there-
fore, must be included in the zeroth-order Hamiltonian.

There exist a number of ways to include relativistic ef-
fects in the zeroth-order molecular Hamiltonian. One can
replace the core electron densities by effective potentials and
include only the valence electrons in the parametrization of
the wave function.20 The parameters of the effective core
potentials �ECPs� may be optimized against accurate relativ-
istic atomic densities and later used in regular nonrelativistic
calculations. The ECP approach indirectly accounts for sca-
lar relativistic as well as spin-orbit effects in the atomic
cores, and it can be applied to all elements of the Periodic
Table while providing a reasonable accuracy �see Refs.
21–23 for evaluations of this method for third-order molecu-
lar properties�. The obvious limitation is the neglect of direct
�rather than indirect via the core potential� relativistic effects
in the valence electron density. The severity of this approxi-
mation varies strongly for different molecular properties; not
only does it vary with respect to the order of the molecular
property but it also varies substantially for different proper-
ties of the same order. The most striking example when spin-
orbit effects in the valence electron density are of prominent
importance in the calculation of a quadratic response func-
tion is given by the two-photon absorption spectra �which
relate to a first-order residue of the quadratic response func-
tion�. It was demonstrated by Henriksson et al.24 that even
for a light element such as neon, the inclusion of spin-orbit
interactions is necessary to obtain a qualitatively correct two-
photon absorption spectrum.

At the all-electron level of theory, spin-free scalar rela-
tivistic corrections may be added to the one-electron Hamil-
tonian and, with the neglect of the picture change in the
perturbation operators, response properties can be deter-
mined without further modifications of the nonrelativistic
code. In this way, the hyperpolarizabilities of a series of
group IIb sulfides were determined25 in the spin-averaged
Douglas-Kroll approximation, as introduced by Hess,26,27

and the same approach has later been benchmarked against
four-component calculations and then showing significant
discrepancies for the hyperpolarizabilities of iodine and tel-
lurium hydrides.21 Full inclusion of scalar relativistic and
spin-orbit effects in the calculation of third-order molecular
properties was accomplished with the implementation of the
quadratic response function �and its first- and second-order
residues� in the time-dependent four-component Hartree-

Fock approximation.24,28,29 While accurate with respect to
relativistic effects, it is expected that the applicability of this
method is severely limited due to the large effects of electron
correlation on nonlinear response properties and since it is
inappropriate to treat relativity and electron correlation sepa-
rately. In the present work, we therefore develop and imple-
ment the quadratic response function in the time-dependent
four-component Kohn-Sham DFT approximation. Our work
should be seen as an extension of the previous mentioned
work in the HF approximation24,28,29 as well as the work on
the linear response function in the DFT approximation.30

In Sec. II A, we give a brief review of the four-
component Kohn-Sham approximation and the derivation of
the quadratic response function but, since these general as-
pects are largely covered in our previous work,29,30 we focus
primarily on a presentation of the details of the implementa-
tion that are unique to the extension made here �see
Sec. II B�. In Sec. III, we illustrate our implementation with
an example calculation of the first-order electric-dipole hy-
perpolarizability for dibromo- and di-iodo-substituted ben-
zene using a set of standard density functionals. We empha-
size that although the implementation is completely general,
we here present results for nonoscillating external perturba-
tions which require functionals of the charge density only.
For dynamic properties, we would like to perform a detailed
investigation of also adding the induced noncollinear magne-
tization as a functional variable, and this work is in progress.

II. THEORY AND METHODOLOGY

A. Time-dependent four-component Kohn-Sham
approximation

In the time-dependent four-component Kohn-Sham DFT
approximation, the noninteracting reference system is de-
scribed by a determinant of spinors �p�r�. The time-reversal
symmetric reference state of the isolated system �0s� is varia-
tionally optimized with the use of an electronic Hamiltonian
for the interacting system in which the kinetic energy is
given by the free-particle Dirac Hamiltonian and the
electron-electron repulsion is approximated by the instanta-
neous Coulomb interaction. This approximate form of the
two-electron part of the relativistic Hamiltonian is improved
on by the inclusion of the Gaunt term, or the full Breit inter-
action, but the introduction of current-current interactions in
DFT requires a general consideration before introduced
here.31 Time-reversal symmetry of �0s� is enforced by the
occupation of Kramers pairs of spinors �corresponding to the
closed-shell state in a nonrelativistic theory�—a pair of
spinors are related by the time-reversal operator,

�p̄�r� = K̂�p�r�, K̂ = �02 − I2

I2 02
�K̂0, �1�

where K̂0 denotes the complex conjugation operator. The ei-
genvalues of the spinors are divided into two sets that are
separated by circa twice the electron rest energy, and spinors
corresponding to the upper and lower sets are sometimes
referred to as electronic and positronic orbitals, respectively
�although they all represent electron wave functions�. The
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reference state includes only electronic orbitals and is opti-
mized in a minmax sense.32

When subjected to an external time-dependent electro-
magnetic field, the reference state becomes time dependent
in a way that is not described by a trivial phase factor but
involves electronic transitions to virtual orbitals. We param-
etrize this time dependence in a nonredundant and unitary
way as follows:2,31

�0̃s�t�� = exp�− �̂�t���0s�, �̂�t� = �aiâa
†âi − �ai

* âi
†âa. �2�

Here and in the following, we have made use of the Einstein
summation convention for repeated indices and
a ,b , . . . , i , j , . . ., and p ,q , . . . are indices of virtual, occupied,
and general molecular orbitals, respectively. In general, the
summation over virtual orbitals in Eq. �2� includes the
positronic orbitals and the corresponding electron transfer
amplitudes are at times denoted by �ai

− �to be distinguished
from rotations among electronic orbitals with amplitudes
�ai

+ �. In calculations of electric-field induced valence proper-
ties, such as the electric-dipole hyperpolarizability, the effect
of redressing of the electronic states due to the inclusion of
the �ai

− parameters in the propagator is small and can be
ignored with the benefit of memory savings.23

For weak, periodic external fields, we can use the
quasienergy formalism to determine the time dependence of
the � parameters33—a technique which was also used for the
derivation and implementation of the linear response func-
tion at this level of theory30 �see, however, Ref. 34 for a
discussion about the validity of this approach�. The relevant
time-averaged Kohn-Sham quasienergy functional can be
written as

Q��� = Ts��� + V��� + J��� + Qxc��� + Ss��� , �3�

where the time-dependent electron density is introduced as �
and depends implicitly on the � parameters. The response
functions are defined as derivatives of the quasienergy with
respect to the Fourier amplitudes of the external electromag-
netic field, and the third-order response, or the quadratic re-
sponse function, is given by

		Â;B̂,Ĉ���B,�C
= 
 d3Q

d�A��A�d�B��B�d�C��C�



�=0
. �4�

In evaluating this derivative, we note that the sum of terms in
Eq. �3� excluding Qxc corresponds formally to Hartree-Fock
theory without exchange interaction. We can, therefore, ben-
efit from the implementation of the quadratic response func-
tion reported in Ref. 29 and use it with a mere turnoff of the
exchange interaction �or partial turnoff for hybrid function-
als� together with the addition of the contribution from Qxc.
We will adopt the adiabatic approximation and employ the
time-dependent exchange-correlation functional as a substi-
tute for Qxc,

Qxc��� → Exc��� =� exc��,	�d
 . �5�

The energy density is here assumed to be a function of � and
the square norm of the electron density gradient 	=�� ·��,
and a time averaging is implied here as well. The time aver-

aging will impose that the response function �Eq. �4�� is non-
zero only when �A=−��B+�C�. In the next section, we will
present the detailed expressions needed for the implementa-
tion of the part in Eq. �4� that is due to Exc.

B. Implementation of the exchange-correlation
contribution to the quadratic response function

In the evaluation of the third-order derivative of Exc with
respect to the amplitudes of the external fields, we will use
chain rule differentiation of the energy density e�� ,	�. We
will view the electron density as dependent on the � param-
eters and determine the response of the latter to the external
perturbation from the variational condition �Q���=0. Since
the 2n+1 rule applies in the present case, it will be sufficient
to determine the first-order response in � with respect to
���� in order to determine the quadratic response function.
We note that the details and code implementation concerned
with the determination of this linear response have already
been considered in Ref. 30. The structure of the implemen-
tation of the quadratic response function at the Hartree-Fock
level is such that first, the formation of a generalized elec-
tronic gradient

�

��ai

 d2Exc

d�Bd�C



�=0
�6�

is made and, thereafter, this gradient is contracted with the
response of the �ai parameters with respect to the external
field.29 In order to comply with this structure, we therefore
seek an explicit expression for the quantity in Eq. �6�.

This exchange-correlation contribution will be added to
the generalized gradient as due to the Coulomb interaction
and which is denoted as E�3�NBNC in Ref. 29. Let us now
turn to the differentiation of Exc and first consider the partial
derivatives that will appear. In doing so, we will make use of
the fact that �→0 implies that �→0 and vice versa and,
although partial differentiation is to be made independently
for �ai and �ai

* , we restrict the presentation to include only
one of them.

With the use of the density operator,

�̂ = �pqâp
†âq, �pq = �p

†�r��q�r� , �7�

the electron density can be written as

��r� = 	0̃s��̂�0̃s� = �pq	0s�e�̂âp
†âqe−�̂�0s� . �8�

Expanding the density matrix elements with use of the
Baker-Campbell-Hausdorff expansion yields

� = �
n=0




��n�, ��n� =
�pq

n!
	0s��̂nâp

†âq�0s� , �9�

where the action of the superoperator �̂ is the formation of a

commutator according to �̂Â= ��̂ , Â�. The differentiation of
the density with respect to the external fields gives

�ABC¯
ª 
 �n�

��A��B��C¯



�=0
= �ai

BC¯��ai

��A
, �10�

where we have introduced
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�ai
BC¯

ª

�n��n�

��ai��bj��ck¯

��bj

��B

��ck

��C
¯ . �11�

In order to account for gradient-corrected density function-
als, we also introduce the following partial derivatives of 	
with respect to the external field:

	B
ª 
 �	

��B



�=0
= 2 � � · ��B, �12�

	BC
ª 
 �2	

��B��C



�=0
= 2��� · ��BC + ��B · ��C� . �13�

The numerical grid-integration kernel in the program as-
sumes the integrand to be written on the form

s�pq + v · ��pq,

where the scalar s and vectorial v functions as well as the
atomic orbital density matrix corresponding to �pq are to be
specified for a given property integration. Let us illustrate
how this works for the electronic gradient,


 �Exc

��ai
* 


�=0

=� � �exc

��

 ��

��ai
* 


�=0

+
�exc

�	

 �	

��ai
* 


�=0
�d


= −� fxc;aid
 , �14�

in which appears the exchange-correlation part of the Kohn-
Sham matrix,

fxc;pq = sf�pq + v f · ��pq,

�15�

sf =
�exc

��
, v f =

1

����
�exc

�����
� � .

Continuing to linear response, we get

�

��ai
* 
 �Exc

��B



�=0
= −� �fxc;ai

B + gxc;ai
�B� �d
 , �16�

where the integrand consists of the exchange-correlation part
of the one-index transformed Kohn-Sham matrix,

fxc;pq
B = sf�pq

B + v f · ��pq
B , �17�

and a remainder that equals to

gxc;pq
�B� = sg�pq + vg · ��pq,

sg
�B� =

�2exc

��2 �B +
�2exc

���	
· 2��� · ��B� , �18�

vg
�B� = � �2exc

���	
�B +

�2exc

�	2 · 2��� · ��B�� · 2 � �

+
�exc

�	
· 2 � �B.

We will reach our desired expression for the quadratic
response by performing a differentiation of Eq. �16� with
respect to the external field. We collect the final result of this
derivation in the form

�

��ai
* 
 d2Exc

d�Bd�C



�=0
= −� �fxc;ai

BC + gxc;ai
�C�B + gxc;ai

�B�C + hxc;ai
�BC��d
 ,

�19�

where we recognize the doubly one-index transformed
exchange-correlation part of the Kohn-Sham matrix fxc;pq

BC as
well as matrices gxc;ai

�C�B and gxc;ai
�B�C which are one-index trans-

formed versions of Eq. �18� with respect to B and C, respec-
tively. The remainder is collected into

hxc;pq
�BC� = sh�pq + vh · ��pq,

sh = � PB,C
 �3exc

��3 �B�C + 2
�3exc

��2�	
�B · 2��� · ��C�

+
�3exc

���	2 · 2��� · ��B� · 2��� · ��C� +
�2exc

��2 �BC

+
�2exc

���	
· 2���� · ��BC� + ���B · ��C��� , �20�

vh = � PB,C
� �3exc

�	3 · 2��� · ��B� · 2��� · ��C�

+ 2
�3exc

���	2�B · 2��� · ��C� +
�3exc

��2�	
�B�C +

�2exc

���	
�BC

+
�2exc

�	2 · 2���� · ��BC� + ���B · ��C��� · 2 � �

+ � �2exc

���	
�C +

�2exc

�	2 · 2��� · ��C�� · 4 � �B

+
�exc

�	
· 2 � �BC� ,

where the operator �PB,C denotes the sum over permutations
between B and C. An implementation of Eq. �19� has been
added to the DIRAC program35 and below, we will present an
example calculation of the electric-dipole hyperpolarizability
which corresponds to a quadratic response function �Eq. �4��
evaluated for electric-dipole operators. The implementation
is general in the sense that it merely assumes the perturba-
tions to be due to one-electron operators and our work is,
therefore, in principle, applicable to a series of electromag-
netic properties. However, the introduction of a magnetic
perturbation breaks the time-reversal symmetry of the system
and requires the consideration of spin polarization in the for-
malism. In fact, even the application of time-dependent elec-
tric fields will induce electronic currents and thereby mag-
netic fields, so also the evaluation of dynamic polarizabilities
should take spin polarization into account. We will return to
this topic in a future work.

III. EXAMPLE CALCULATIONS

A. Computational details

All calculations in the present work were performed for
molecular structures that were optimized at the one-
component Kohn-Sham DFT level of theory using the hybrid
B3LYP exchange-correlation functional;36 for H, C, and Br,
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the 6-31G* basis set was used,37,38 and for iodine, the
Stuttgart ECP was used.39 Structure optimizations were per-
formed in the C2v point group with the GAUSSIAN program.40

The molecules are placed with the z axis as principle axis
and in the yz plane with the heavy atoms along the negative
z direction.

The all-electron property calculations were performed
with a locally modified version of the DIRAC program,35 and
those where an ECP was used for Br or I were performed
with a version of the DALTON program41 to which an imple-
mentation of the Coulomb attenuated B3LYP �Ref. 42�
�CAM-B3LYP� has been added.43 The property calculations
based on single determinant reference states �all-electron as
well as ECP based� were performed with fully uncontracted
basis sets that are based on the exponents from Sadlej’s po-
larization basis set44 with further addition of polarization and
diffuse functions. The basis sets were augmented using the
formula

	N+j = � 	N

	N−1
� j

	N, j � �1,Naug� , �21�

where Naug is the number of augmentation functions added
and 	N and 	N−1 refer to the two most diffuse exponents in
the original basis sets. The only exception to this rule is the
f shell of the iodine basis set, which was not augmented. To
the basis set of bromine, we added four f functions based on
the four most diffuse p exponents in the original basis set.
The sizes of the singly augmented large component basis sets
used in the property calculations were �7s5p�, �11s7p5d�,
�16s13p10d4f�, and �20s16p13d4f� for H, C, Br, and I, re-
spectively, and the small-component basis functions were
generated from those of the large component with the use of
the restricted kinetic-balance condition. In all four-
component calculations, we have ignored the interactions be-
tween the small component densities, i.e., the �SS �SS� inte-
grals. This approximation has virtually no influence on the
presented results, as demonstrated in Ref. 23, and will not be
further discussed here. All DFT functionals were employed
self-consistently and with their proper derivatives to the re-
quired orders in the perturbations.

For comparison, wave function correlated results were
obtained at the coupled cluster level with inclusion of single
and double electron excited configurations �CCSD�. For
these calculations, we adopted the contracted Sadlej basis
set44 for hydrogen and carbon but augmented with the same
diffuse functions as described above. For bromine and io-
dine, we employed the valence basis set of the Stuttgart
ECPs �Ref. 39� but augmented and polarized using the func-
tions from the Sadlej basis set and Eq. �21�. The sizes
of the heavy atom basis sets in the CCSD calcula-
tions were �6s6p5d4f� / �4s4p3d2f� �bromine� and
�6s6p8d2f� / �4s4p3d1f� �iodine�.

B. Results and discussion

With a molecular dipole moment aligned with the z axis,
the relevant experimental observable for second-harmonic

generation is ��̄,45 where

�̄�− 2�;�,�� =
1

5 �
�=x,y,z

��z�� + 2��z�� . �22�

In previous studies, we have shown that relativistic effects in
heavy atom substituted �-conjugated systems are pro-
nounced for the dipole moment as well as the first-order
hyperpolarizability �but not for the linear polarizability�;22,23

for bromobenzene, the effects are predominantly scalar rela-
tivistic in nature but for iodobenzene, scalar relativistic and
spin-orbit effects are about equally important.23 Whereas
changes due to relativity in the dipole moment can be attrib-
uted to changes in the chemical bond polarities, the effects
on the hyperpolarizabilities are not as easily interpreted. The
sum-over-states expression for �, which reads as

�����− ��;�1,�2�

= �−2 � P−�,1,2�
k,l

�
	0��̂��k�	k��̄̂��l�	l��̂��0�

��k − �����l − �2�
, �23�

reveals an intricate dependence of the hyperpolarizability on
interexcited state transition moments and excited-to-ground
state dipole moment differences, in addition to a dependence
on the linear absorption spectrum via the ground-to-excited
state transition dipole moments and excitation energies. The
permutation operator introduced in Eq. �23� permutes the
pairs of dipole moment operators and optical frequencies

��̂� ,−���, ��̂� ,�1�, and ��̂� ,�2�, and �̄̂ denotes the electric-
dipole fluctuation operator. One thing that becomes clear
from the sum-over-states expression is the separation be-
tween scalar relativistic and spin-orbit effects, since the latter
can be attributed to the coupling between states in the singlet
and triplet manifolds. The nonrelativistic and relativistic lin-
ear absorption spectra presented in Ref. 23 show significant
spin-forbidden absorption only for the iodobenzenes, and
scalar relativistic and spin-orbit effects on � are also of com-
parable magnitude in this case, whereas the spin-orbit effects
are small on the same property for the bromobenzenes.

The same argumentation can be made for the linear po-
larizability. In fact, � depends only on the observables in the
linear absorption spectrum, namely, transition energies and
intensities. The absence of relativistic effects that are seen in
Tables I and II for this property is, therefore, puzzling but
has been previously noted also for the thiophene homologs
which serve as important building blocks in optical
materials.22

In the present work, we focus at a formulation of the
quadratic response function at the electron correlated four-
component level of theory. We give here a presentation of the
response function which is quite different from the sum-
over-states expression in Eq. �23� but is rather seen as energy
derivatives. Since the correlation energy depends on the elec-
tron density, its value per electron will basically be larger, the
heavier the atom. What makes property calculations at the
Hartree-Fock level at all reasonable for heavy atoms are the
facts that the molecular property is a measure of the energy
difference with respect to external fields and that the induced
fluctuations in the core electron densities are very small—in
the valence region, where density fluctuations are larger, the
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effects of electron correlation are smaller. As a rule of thumb
for the polarizability of molecules containing first- and
second-row elements, the isotropic value is typically under-
estimated by some 5% at the Hartree-Fock level of theory,
whereas anisotropies suffer from larger errors.46 For the hy-
perpolarizabilities, on the other hand, the effects of electron
correlation are known to be both large and unsystematic.

In Tables I and II, we present the optical properties of
disubstituted bromobenzene and iodobenzene, respectively,
in their meta and ortho conformations. We employ a series of
four standard density functionals in the correlated four-
component calculations, namely, local-density approximation
�LDA�, BLYP, B3LYP, and CAM-B3LYP, and the ordering
of functionals in the tables reflects the consensus of increas-
ing accuracy as due to gradient and exact exchange correc-

tions. An apparent consequence of the use of the more so-
phisticated density functionals is the improved quality of the
orbital energies and, since the difference in orbital energies
between virtual and occupied orbitals appears on the diago-
nal of the electronic Hessian, it will correspond to improved
excitation energies in the response function approach as well.
In Ref. 47, it was also well illustrated how the inclusion of
exact exchange in the density functional affects linear re-
sponse calculation of excitation energies. It is the exact ex-
change that provides the Coulomb attraction between the
hole and the electron in these calculations, and the more
spatially separated the hole and electron orbitals are, the
greater the need for exact exchange in the functional is. The
present systems are by no means extreme charge-transfer
systems but, at the same time, it is clear that the halogen

TABLE I. Optical properties for disubstituted bromobenzenes at the Hartree-Fock, Kohn-Sham, and post-HF
levels of theory. Different exchange-correlation functionals are considered for the inclusion of electron corre-
lation effects. All quantities are given in a.u.

Method �z �xx �yy �zz �zxx �zyy �zzz

meta-dibromobenzene
LDA NR 0.6149 72.79 166.1 124.2 26.13 −168.8 32.79

ECP 0.5728 73.93 168.2 125.5 32.10 −167.4 44.76
4C 0.5903 73.00 166.5 124.5 29.04 −163.4 41.00

BLYP NR 0.6105 73.62 167.2 125.1 29.96 −155.6 44.22
ECP 0.5902 73.60 167.0 125.0 30.82 −147.1 47.97
4C 0.5864 73.85 167.6 125.3 33.13 −149.8 53.01

B3LYP NR 0.6435 71.86 161.2 121.7 21.16 −117.7 36.31
ECP 0.6203 72.01 161.4 121.8 22.92 −112.6 40.95
4C 0.6186 72.03 161.5 121.9 23.63 −112.6 43.41

CAM-B3LYP NR 0.6626 70.85 156.5 119.4 17.76 −88.99 34.92
ECP 0.6333 71.22 157.1 119.7 20.07 −85.60 40.32
4C 0.6361 71.00 156.8 119.6 19.81 −84.30 41.08

HF NR 0.7482 69.78 150.5 115.8 3.57 −48.97 27.85
ECP 0.7291 69.9 150.8 116.0 4.91 −47.30 31.27
4C 0.7218 69.81 150.8 115.9 4.55 −45.50 31.64

CCSD ECP 0.6344 72.18 156.6 120.3 12.87 −82.70 33.06
ortho-dibromobenzene

LDA NR 0.8925 71.93 131.4 150.9 41.73 −62.10 −164.4
ECP 0.8208 73.00 132.9 152.3 50.83 −55.44 −152.1
4C 0.8513 72.14 131.6 151.0 46.44 −56.28 −152.8

BLYP NR 0.8814 72.71 132.1 151.6 47.09 −52.58 −148.8
ECP 0.8479 72.70 132.0 151.5 48.14 −46.90 −138.6
4C 0.8409 72.94 132.4 151.9 52.40 −46.22 −136.6

B3LYP NR 0.9395 71.01 128.3 147.1 33.37 −39.78 −113.5
ECP 0.9008 71.16 128.4 147.2 35.71 −35.25 −105.3
4C 0.8977 71.18 128.5 147.2 37.29 −34.45 −103.3

CAM-B3LYP NR 0.9739 70.03 125.5 143.5 27.66 −28.81 −80.26
ECP 0.9248 70.37 125.9 143.9 30.96 −24.62 −72.58
4C 0.9296 70.17 125.7 143.7 31.01 −23.97 −71.05

HF NR 1.1147 69.10 121.4 138.8 6.72 −9.99 −35.62
ECP 1.0826 69.21 121.6 138.9 8.45 −7.56 −31.41
4C 1.0709 69.13 121.5 138.9 8.30 −6.61 −29.79

CCSD ECP 0.9310 71.34 126.5 144.1 20.50 −28.65 −82.57
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atoms will play the role of donors in excitations to the �*

orbitals. We, therefore, anticipate that the use of the CAM-
B3LYP can have an impact on results, and we would argue
that these results are the best ones at the four-component
level of theory. We would also like to draw attention to the
systematic decrease in � when comparing results obtained
with the series of functionals BLYP, B3LYP, and CAM-
B3LYP. This trend is directly coupled to an increasing por-
tion of exact exchange and thereby increased excitation en-
ergies of the system.

When measured against the four-component CAM-
B3LYP results, the correlation contributions to �zxx, �zyy, and
�zzz of meta-bromobenzene amount to 15.3, −38.8, and
9.4 a.u., respectively, and for meta-iodobenzene, the corre-
sponding values are 15.7, −46.4, and 8.5 a.u. In both cases,

there is thus a strong error cancellation for the Hartree-Fock

values of the observable �̄ since electron correlation lowers
the value of the zyy component but increases the values of
the other two components. This illustrates how unsystematic
correlation effects can be for the first-order hyperpolarizabil-
ity. On the other hand, we note that the correlation effects on
the hyperpolarizabilities of the two meta systems are close in
magnitude. That again indicates that it is the correlation en-
ergy in the valence region that matters for this property, and
that this energy is almost the same in the two systems. If we
make the same comparison for the two ortho systems, we see
correlation contributions of 22.7, −17.4, and −41.3 a.u. for
the three nonzero � components of bromobenzene and 24.1,
−27.6, −46.9 a.u. for the three components of iodobenzene.

TABLE II. Optical properties for disubstituted iodobenzenes at the Hartree-Fock, Kohn-Sham, and post-hF
levels of theory. Different exchange-correlation functionals are considered for the inclusion of electron corre-
lation effects. All quantities are given in a.u.

Method �z �xx �yy �zz �zxx �zyy �zzz

meta-di-iodobenzene
LDA NR 0.6337 94.24 214.0 149.1 85.17 −175.1 140.6

ECP 0.5674 95.86 216.1 150.6 96.74 −166.0 167.0
4C 0.5661 94.61 215.1 149.5 96.78 −151.2 171.4

BLYP NR 0.6240 95.86 216.0 150.5 95.56 −150.4 166.4
ECP 0.5885 95.16 214.3 149.7 96.71 −128.2 174.8
4C 0.5575 96.32 217.4 151.1 108.7 −125.6 200.3

B3LYP NR 0.6501 93.55 208.1 146.5 79.16 −88.74 151.1
ECP 0.6076 93.30 207.4 146.2 82.61 −73.72 162.0
4C 0.5806 93.79 209.9 146.9 89.19 −64.85 179.0

CAM-B3LYP NR 0.6618 91.88 201.2 143.4 68.39 −37.66 141.1
ECP 0.6057 92.17 201.6 143.7 73.46 −25.95 155.5
4C 0.5867 91.99 202.2 143.7 76.96 −15.23 165.7

HF NR 0.7537 91.23 196.1 140.5 56.17 12.08 140.0
ECP 0.7074 91.14 196.5 140.5 59.36 22.27 150.5
4C 0.6793 90.91 197.2 140.5 61.26 31.21 157.2

CCSD ECP 0.5822 96.54 205.1 147.6 80.97 −46.26 180.7

ortho-di-iodobenzene
LDA NR 0.8877 92.07 166.3 182.7 125.0 −42.42 −46.42

ECP 0.7777 93.59 167.9 184.0 142.3 −26.39 −16.02
4C 0.7766 92.45 166.6 182.9 143.9 −19.06 −2.32

BLYP NR 0.8639 93.49 167.7 183.9 136.7 −24.59 −16.73
ECP 0.8071 92.87 166.1 182.7 138.2 −8.59 5.99
4C 0.7544 93.94 168.1 184.2 157.9 1.05 29.70

B3LYP NR 0.9103 91.31 162.4 178.6 113.4 1.21 25.32
ECP 0.8411 91.11 161.6 178.0 118.1 14.86 45.94
4C 0.7962 91.57 162.7 178.8 129.7 25.04 67.06

CAM-B3LYP NR 0.9336 89.74 158.1 174.1 97.05 22.97 66.22
ECP 0.8415 90.03 158.2 174.2 104.6 36.07 86.91
4C 0.8105 89.88 158.3 174.3 110.4 45.22 104.3

HF NR 1.0740 89.19 154.3 170.2 78.37 53.66 123.4
ECP 0.9973 89.13 154.2 170.1 82.94 65.23 139.0
4C 0.9519 88.93 154.3 170.4 86.26 72.80 151.2

CCSD ECP 0.8023 94.14 162.7 177.7 117.3 23.97 89.22
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We have argued that the ordering of DFT results in the
tables reflects the quality. In order to get a more objective
measure of the performance of the various functionals, we
have also determined the optical properties using a nonrela-
tivistic wave function correlated approach in conjunction
with the Stuttgart relativistic ECPs. Due to the computational
cost associated with the CCSD method, we are forced to
employ a reduced basis set and, given the fact that the basis
set requirements are stronger in wave function than in den-
sity functional approaches, we cannot use the CCSD results
as benchmarks. Furthermore, the lack of inclusion of relativ-
istic effects in the valence region will make the results based
on ECPs error prone for the iodobenzenes. For the �-tensor
elements of bromobenzenes, the largest discrepancy between
ECP and four-component results at the CAM-B3LYP level is
as small as 1.5 a.u. �or 2%�, whereas for the iodobenzenes,
this error bar is 17.4 a.u. It is, therefore, reasonable to use the
bromobenzene CCSD results for the evaluation of the vari-
ous density functionals. For each individual � component of
the bromobenzenes, the best agreement with the CCSD re-
sults is obtained with use of the CAM-B3LYP functional but,
at the same time, it is clear that discrepancies between the
correlated results can be as large as 10 a.u. �see the zzz com-
ponent of ortho-bromobenzene�.

The calculations of the hyperpolarizabilities of the ha-
lobenzenes amply demonstrate that electron correlation ef-
fects can be very large for this property. Of greater concern
to the present work, however, is the fact that relativistic ef-
fects on the hyperpolarizability are substantial for the bro-
mobenzenes and large for the iodobenzenes. The develop-
ment of electron correlated propagator methods with proper
inclusion of relativity is particular important since the two
effects are not additive. Without exception for the � tensor,
the relativistic effects at the correlated level of theory exceed
those at the uncorrelated level of theory, e.g., the relativistic
effects for �zxx, �zyy, and �zzz at the CAM-B3LYP level
amount to 13.3, 22.2, and 38.1 a.u., respectively, whereas at
the Hartree-Fock level, the corresponding values are 7.9,
19.2, and 27.8 a.u. The relativistic corrections are without

exception positive, thereby increasing the value of �̄.

IV. CONCLUSIONS

A derivation and implementation of the quadratic re-
sponse function at the four-component density functional
level of theory has been presented. The adiabatic, Kramers-
restricted Kohn-Sham approximation has been adopted with
consideration made of gradient-corrected functionals. We ex-
emplify the significance of this work with calculations of the
optical properties of disubstituted halobenzenes and thereby
illustrate internal heavy atom effects on the hyperpolariz-
abilities in �-conjugated systems. Our best results are ob-
tained with the use of the Coulomb attenuated B3LYP
functional,42 which here provides notably different hyperpo-
larizability values from B3LYP. It is shown that correlation
as well as relativistic effects on � are large for the systems
under investigation. Relativity alone reduces the

��̄-response signals by 62% and 75% for meta- and ortho-
bromobenzene, respectively, and enhances the same response

by 17% and 21% for meta- and ortho-iodobenzene, respec-
tively �these values are based on the CAM-B3LYP results�.
The results in the present work also demonstrates the well-
known fact that correlation and relativistic effects are not
additive and that our work is called for.
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A first implementation of the single residue of the quadratic response function in the
four-component Hartree–Fock approximation is presented. The implementation is based on a
Kramers paired molecular orbital basis and takes full advantage of time and spatial symmetry
reductions in a quaternion formulation—in analogy with the previous work on the quadratic
response functionfJ. Chem. Phys.121, 6145s2004dg. Sample calculations are given in terms of the
monochromatic and coherent two-photon absorption cross sections in the noble gases. The
relativistic two-photon selection ruleDJ=h0, ±2j allows for nonrelativistically spin-forbidden
transitions, and, even in neon, strong two-photon absorption is shown to occur for theX 1S0
→2 3P2 transition. It is argued that relevant comparisons between nonrelativistic and relativistic
calculations must be performed at the level of integrated absorption cross sections. ©2005
American Institute of Physics. fDOI: 10.1063/1.1869469g

I. INTRODUCTION

Two-photon absorptionsTPAd was predicted already in
1931 by Göppert-Mayer1 but not observed in experiment un-
til the advent of the laser. We here refer to the instantaneous
optical process in which two light quanta are annihilated
under resonant conditions in the transition between two
states in a quantum mechanical system. The main features
of this process is that it occurs with a probability depending
quadratically on the incident light intensity, and that it
allows for low-energy induced optical transitions. For these
and other, more technical, reasons, two-photon absorption
is today used in a variety of applications, e.g., spectroscopy,
up-conversion of lasers, optical power limiting, and
microscopy.2

The energy absorbed from the radiation field due to two-
photon absorption is proportional to the imaginary part of the
intensity-dependent refractive index, or, in other words, the
third-order polarizationgs−v ;v ,−v ,vd. However, under
resonant conditions it has proven effective to express the
TPA cross section in terms of the so-called two-photon ma-
trix elements, which can be considered as real and obtained
from the second-order response of the reference state wave
function. This technique has been used by several authors in
order to calculate TPA cross sections by means of standard
electronic structure theory in quantum chemistry, and imple-
mentations include the Hartree–Fock,3 multiconfigurational
self-consistent field,3 coupled cluster,4 and density functional
theory5 methods.

Over the past several years, we have been involved in
the development of optical power limiting materials.6 The
performance of these materials is analyzed in terms of the
Jablonski diagram in which TPA is used to overcome the
band gap, and the long-gained experience by us and others
shows that organometallic compounds are particularly suit-
able to provide broadband protection against laser damage. It
is clear that the triplet manifold of states plays a crucial role
in this success and that spin-forbidden transitions are in-
duced by the heavy atoms in the organic network. With this
background as main motivation, it is our intention here to
extend the list of quantum chemical methods given above to
include fully relativistic four-component methods. In doing
so, we correctly account for the coupling of non-relativistic
singlet and triplet states, and the absorption is governed by
the change in the total angular momentum. We will develop
the two-photon matrix element at the four-component,
Kramers-restricted, Hartree–Fock level of theory, and the un-
correlated treatment is expected to be reasonable because of
the closed-shellsand large band gapd character of the target
compounds in the optical power limiting applications. We do
by no means, however, exclude ourselves from a future ex-
tension to include electron correlation but rather see the
present work as a first step on the way.

Our implementation will be illustrated by sample calcu-
lations on the noble gas atoms rather than complex organo-
metallic molecules. This is partly a matter of computational
size, but, more importantly, the choice of spherically sym-
metric systems illustrates the relativistic selection rules for
two-photon absorption well and will furnish a general dis-
cussion on the inclusion of relativity for this property.

adElectronic mail: johhe@ifm.liu.se
bdElectronic mail: panor@ifm.liu.se
cdElectronic mail: hjj@chem.sdu.dk
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II. THEORY AND METHODOLOGY

A. One- and two-photon absorption

When subjected to periodic electromagnetic radiation
with period timeT, the average rate of energy absorbance per
unit time by a material is given by

kRabslT =E
V

kj ·ElTdr , s1d

where j is the current density in the material andE is the
applied electric field.7 The current density is proportional to
the time derivative of the induced polarization, and the
imaginary parts of the linear and nonlinear polarizations
therefore correspond to one- and multiphoton absorption, re-
spectively. Even orders of the polarization will vanish in the
integration over one period of time—here denoted by
k. . .lT—and, hence, we need to be concerned with the linear
polarizability and the second-order hyperpolarizability in or-
der to address one- and two-photon absorption. As far as
linear absorption is concerned, we adopt the custom to
present results for the oscillator strength,

dOPA =
2v f

3 o
a

uk0um̂auflu2, s2d

wherev f is the transition frequency andm̂a is the electric
dipole operator along the molecular axisa. However, in the
infinite excited-state lifetime approximation, the oscillator
strength is closely related to the imaginary part of the linear
polarizability that accounts for the linear loss of radiation
energy in Eq.s1d, see Ref. 8 for details. Correspondingly, the
two-photon absorption cross section is proportional to the
imaginary part of the hyperpolarizabilitygs−v ;v ,−v ,vd,
which, assuming that only one two-photonsTPd resonant
state contributes significantly, can be written as9

Imfgabgds− v;v,− v,vdg =
"

G f/2
Sag

0→fsvdfSdb
0→fsvdg* , s3d

whereG f is the lifetime broadening of the TP state and the
so-called two-photon absorption matrix element is written as

Sab
0→fsvd = "−2o

k
F k0um̂auklkkum̂bufl

vk − v
+

k0um̂buklkkum̂aufl
vk − v

G .

s4d

From a computational point of view, it is easier to compute
the TPA matrix element rather than the second-order hyper-
polarizability since the TPA matrix element is also a residue
of the first-order hyperpolarizability,

lim
v2−vf

sv f − v2dbabgs− vs;v1,v2d = Sab
0→fSv f

2
Dkf um̂gu0l,

s5d

where, in the left-hand side of Eq.s5d, we havevs=v1

+v2 andv1=−v f /2. Considering randomly oriented samples
as gases and liquids, the relevant orientationally averaged
two-photon absorption cross section is determined from the
expression10

dTPA =
1

15oa,b
HFSaa

0→fSv f

2
DFSbb

0→fSv f

2
DG*

+ GSab
0→fSv f

2
D

3FSab
0→fSv f

2
DG*

+ HSab
0→fSv f

2
DFSba

0→fSv f

2
DG*J , s6d

whereF, G, andH are factors that depend on the polarization
of the incident light. In this work the implementation of the
equivalences of Eqs.s4d and s6d in the relativistic four-
component Hartree–Fock approximation is presented.

B. Two-photon absorption in the four-component
Hartree–Fock approximation

In the four-component Hartree–Fock approximation the
reference state is represented by a single Slater determinant
with one-electron four-spinors as elements. The eigenvalues
of the canonical Hartree–Fock orbitals fall into two sets that
are separated by twice the rest energy of the electron, and the
reference state is optimized with a restriction of only occu-
pying orbitals with positive energy—one refers to these or-
bitals as electronic, whereas the others are referred to as
positronic. Time-reversal symmetry in the reference state is
enforced by occupation of Kramers pair orbitals,

cisr d =1
ci

La

ci
Sa

ci
Lb

ci
Sb
2, cīsr d = K̂cisr d =1

− ci
Lb*

− ci
Sb*

ci
La*

ci
Sa*
2 , s7d

and these orbitals are related by the time-reversal operator

K̂=−ifI2 ^ sygK̂0, whereK̂0 is the complex conjugation op-
erator.

The time dependence of the reference state is param-
etrized by a unitary exponential operator according to11

ucstdl = eik̂stdu0l, k̂std = o
i,s

skisas
†ai + kis

* ai
†asd, s8d

where a nonredundant parametrization includes electron
transfer from occupied electronic orbitalsi to unoccupied
electronic and positronic orbitalss—the corresponding trans-
fer amplitudes are here denoted byke−e and ke−p, respec-
tively. We use time-dependent perturbation theory to obtain
corrections to the molecular polarization that are induced by
the external electric fields:

kcstdum̂ucstdl = k0um̂u0l +E
−`

`

dv1kkm̂;V̂allv1
Fa

v1e−iv1t

+
1

2
E

−`

`

dv1E
−`

`

dv2kkm̂;V̂a,V̂bllv1,v2

3Fa
v1Fb

v2e−isv1+v2dt + ¯ , s9d

where the Fourier coefficients define the linear and quadratic
response functions,Fv is the amplitude of the external field,

and the electric-dipole coupling operator is given byV̂a

=esr̂a ^ I4d. Implementations of the linear and quadratic re-
sponse functions in the four-component Hartree–Fock ap-
proximation are described in Refs. 12 and 13, respectively,

114106-2 Henriksson, Norman, and Jensen J. Chem. Phys. 122, 114106 ~2005!
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and, at the nonrelativistic Hartree–Fock level, the first-order
residue of the quadratic response function has been presented
by Hettemaet al.3 The TPA matrix element in the Hartree–
Fock approximation can be written as3

Sab
0→fsvsd = Nj

as− vsdb jk
f2gNk

fsv fd + Nj
bsv1dfa jk

f2g

+ akj
f2ggNk

fsv fd + Nj
as− vsdfEjkl

f3g

+ Ejlk
f3g − v1Sjkl

f3g − v fSjlk
f3ggNk

bsv1dNl
fsv fd, s10d

where the linear response vectors are given by

Nj
Xsvd = fEf2g − "vSf2gg jk

−1Xk
f1g, X P ha,bj, s11ad

fEf2g − "vSf2gg jkNk
fsvd = 0, s11bd

andEfig, Sfig, andafig andbfig are generalized Hessian, over-
lap, and property matrices, respectively. In this work, we
have implemented Eq.s10d in the Kramers restricted four-
component Hartree–Fock approximation. We fully exploit
computational cost reductions involved with spatial molecu-
lar symmetries of point groupD2h and subgroups, and the
time-reversal symmetry of the wave function is exploited in
a quaternion formalism.14 Our work is integrated in the
DIRAC program.15

III. COMPUTATIONAL DETAILS

All calculations in the present work were performed at
the Hartree–Fock level of theory using uncontracted basis
sets of spherical Gaussian functions—with use of five and
seven components of thed and f functions, respectively. The
results from four-component relativistic calculations include
all large- and small-component integralssLL, LS, andSSd as
well as all orbital rotationsse→e ande→pd. In the calcula-
tions on He, Ne, and Ar, the exponents of the basis sets were
taken from Dunning’s quadruply augmented, correlation-
consistent, triple zeta basis setssqaug-cc-pVTZd.16–18For Kr,
Xe, and Rn, the corresponding basis sets were not available,
and exponents were instead taken from the well-tempered
basis sets of Huzinaga and Klobukowski.19 In the notation of
Huzinaga and Klobukowski,f functions were added to the
original basis sets for Kr, Xe, and Rn in accordance with
nf P f15,22g, nf P f13,24g, and nf P f11,24g, respectively.
Furthermore, the well-tempered basis sets were quadruply
augmented using the formula

zN+j = F zN

zN−1
G j

zN, j P f1,Naugg, s12d

whereNaug is the number of augmentation functions added
and zN and zN−1 refer to the two most diffuse exponents in
the original basis sets. The sizes of the large component basis
sets used in the property calculations weref10s4p5dg,
f14s9p6d5fg, f19s13p6d5fg, f30s24p18d12fg,
f32s27p21d16fg, and f32s28p22d18fg for He, Ne, Ar, Kr,
Xe, and Rn, respectively, and the small-component basis
functions were generated from those of the large component
with use of the restricted kinetic-balance condition.

All calculations were performed with a locally modified
version of theDIRAC program.15

IV. RESULTS AND DISCUSSION

The one- and two-photon absorptionsOPA and TPAd
cross sections have been calculated for the low-lying valence
transitions in the noble gases. The effects of relativity on the
absorption spectra are estimated by a comparison of results
obtained in the nonrelativistic time-dependent Hartree–Fock
sTDHFd approximation with those obtained in the relativistic
time-dependent four-component Hartree–FocksTDDHFd ap-
proximation. Our results presented below for one- and two-
photon absorption cross sections correspond to the summed
absorption to the degenerateMJ components of the excited
states. We expect relativistic effects to come into play in
different ways depending on the size of the atom. For the
heavy elements the inner-core density is composed of elec-
trons with high kinetic energies and the density will thus be
strongly altered by relativity. In an indirect manner this will
generate a potential for the valence electrons which is quite
different from the nonrelativistic one. However, the direct
effects of relativity on the low kinetic-energy, valence, elec-
trons need not be that large. These arguments form the foun-
dation for the use of so-called effective-core potentials in
quantum chemical calculations, and we have made frequent
use of this technique in past calculations of linear and non-
linear absorption spectra without having had the opportunity
to benchmark against results from four-component methods.6

Therefore, the present work is important in that it addresses
also the direct relativistic effects in the valence electron den-
sity for light as well as heavy elements. We will demonstrate
how relativity alters the one- and two-photon absorption
spectra. To begin with, it is clear that the nonrelativistic
atomic selection rules on orbital and spin angular momentum
sOPA,DL= ±1 andDS=0; TPA,DL=h0, ±2j andDS=0d are
to be replaced by the relativistic atomic selection rules on
total angular momentumsOPA, DJ= ±1 and TPA, DJ
=h0, ±2jd.

Regarding basis sets, the made choice is based on
TDDHF calculations of excitation energies and cross sec-
tions for helium, neon, and argon using uncontracted basis
sets with exponents from triply and quadruply augmented
cc-pVXZ, XP hT,Q,5j.16–18 Excitation energies are seen to
be quite insensitive to the choice of basis set, whereas
changes are noticeable in the two-photon absorption cross
sections. For theX 1S0→1 1S0 transition in helium, the dif-
ference between cross sections obtained with qaug-cc-pVTZ
swhich is the basis set used in later calculationsd and qaug-
cc-pV5Z are within 1%, while for theX 1S0→2 1S0 transi-
tion, the value changes fromd=1.6002 a.u.ssee Table Id to
d=1.4737 a.u. using qaug-cc-pV5Z. For neon and argon, the
two-photon absorption cross sections as obtained with the
two different basis sets are within 4% and 1%, respectively.
So, apart from the single transition in helium, the results
presented here for helium, neon, and argon should be within
5% of the Hartree–Fock limiting values.

A. One-photon absorption

Results for the linear absorption spectra of helium, neon,
argon, krypton, xenon, and radon are presented in Tables
I–VI, respectively. For helium we cover one-photon transi-

114106-3 Two-photon absorption J. Chem. Phys. 122, 114106 ~2005!
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tions from the 1s shell to the 2p and 3p shells. At the non-
relativistic level the one-photon excited states are triply or-
bital degenerate, and, being a first-row element, there are no
significant differences in the linear absorption spectra of he-
lium at the relativistic level.

For neon we include one-photon induced transitions
from the 2p shell to the 3s and 4s shells, and for the remain-
ing elements we have restricted results to include onlynp
→ sn+1ds transitions. Starting with neon there is a noticeable
absorption at the relativistic level to the nonrelativistically

spin-forbidden states, e.g., the oscillator strength for the
X 1S0→1 3P1

o transition is 0.0043. It is clear that this
intensity has “leaked” over from the allowedX 1S0→1 1P1

o

transition with dOPA=0.1608, and it is the integrated
linear absorption cross section that should be compared to
the nonrelativistic value ofdOPA=0.1645, see Table II and
Fig. 1.

The discussion on absorption leakage becomes more ap-
parent for argon where, for the corresponding transitions, it
amounts to 9%, see Table III. Even if the relativistic effects

TABLE I. Nonrelativistic TDHF and relativistic TDDHF excitation energies,DE seVd, and one- and two-
photon absorption cross sectionssa.u.d, d, for helium.

Configuration Desig. Expt.a

TDHF

J

TDDHF

DE db DE db

1s2s 3S1 19.819 19.694 0 1 19.694 0
1S0 20.615 21.125 10.426 0 21.126 10.424

1s2p 3P2
o 20.963 21.220 0 2 21.221 0

3P1
o 20.963 21.220 0 1 21.221 0.000 00

3P0
o 20.964 21.220 0 0 21.221 0

1P1
o 21.217 21.694 0.253 52 1 21.695 0.253 50

1s3s 3S1 22.718 23.043 0 1 23.044 0
1S0 22.920 23.405 1.600 6 0 23.405 1.600 2

1s3p 3P2
o 23.006 23.381 0 2 23.382 0

3P1
o 23.006 23.381 0 1 23.382 0.000 00

3P0
o 23.006 23.381 0 0 23.382 0

1P1
o 23.086 23.537 0.078 248 1 23.538 0.078 242

aExperimental excitation energies are taken from Ref. 20.
bWhether we refer todOPA or dTPA is clear from the atomic selections rules.

TABLE II. Nonrelativistic TDHF and relativistic TDDHF excitation energies,DE seVd, and one- and two-
photon absorption cross sectionssa.u.d, d, for neon.

Configuration Desig. Expt.a

TDHF

J

TDDHF

DE db DE db

2p53s 3P2
o 16.619 17.990 0 2 17.927 0

3P1
o 16.671 17.990 0 1 17.997 0.004 329

3P0
o 16.716 17.990 0 0 18.045 0

1P1
o 16.848 18.363 0.164 47 1 18.349 0.160 81

2p53p 3S1 18.382 19.532 0 1 19.510 0
3D3 18.555 19.967 0 3 19.910 0
3D2 18.576 19.967 0 2 19.950 0.819 4
3D1 18.613 19.967 0 1 19.993 0
1D2 18.637 20.129 11.060 2 20.090 5.608 6
1P1 18.694 20.159 0 1 20.137 0
3P2 18.704 20.159 0 2 20.164 4.712 6
3P0 18.712 20.159 0 0 20.173 0.3097
3P1 18.727 20.159 0 1 20.186 0
1S0 18.966 20.564 12.850 0 20.554 12.591

2p54s 3P2
o 19.664 21.215 0 2 21.156 0

3P1
o 19.688 21.215 0 1 21.197 0.009 680

3P0
o 16.761 21.215 0 0 21.276 0

1P1
o 19.780 21.295 0.028 633 1 21.316 0.018974

aExperimental excitation energies are taken from Ref. 20.
bWhether we refer todOPA or dTPA is clear from the atomic selections rules.
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on the integrated absorption are small for argon, the absorp-
tion spectra will be quite different due to the two peaks
separated by 0.14 eV in the relativistic case as compared to
the one single peak in the nonrelativistic case.

In the linear absorption spectrum of krypton and xenon,
the corresponding two peaks are separated by 0.68 and
1.0 eV, respectively, and they are more or less equally in-
tense. We note that the experimental energy separations of
the one-photon states withJ=1 are 0.20, 0.61, and 1.13 eV
for argon,20 krypton,21 and xenon,22 respectively, and a com-
parison to the corresponding TDDHF values given above
show that the theoretical values are in error with about
0.1 eV. Considering the inherent weakness in the Hartree–
Fock approach when it comes to the description of triplet
states, this agreement is noteworthy.

In the radon spectrum, the experimental energy separa-
tion of the two one-photon states withJ=1 is as large as
3.9 eV,22 and, since we adopt a bottom-up algorithm in solv-
ing the generalized eigenvalue equationfEq. s11bdg, we were
not able to resolve the 11P1

0 state in the calculation.
A general remark to be made is that, although the agree-

ment between experimental and theoretical excitation ener-
gies are good for the low-lying states in the noble gases, it is
clear that electron correlation plays a significantly more im-
portant role for neon. Here, discrepancies as large as 10% are
seen for the transition energies.

B. Two-photon absorption

Turning attention to the TPA cross sections, there appear
striking differences between nonrelativistic and relativistic

TABLE III. Nonrelativistic TDHF and relativistic TDDHF excitation energies,DE seVd, and one and two-
photon absorption cross sectionssa.u.d, d, for argon.

Configuration Desig. Expt.a

TDHF

J

TDDHF

DE db DE db

3p54s 3P2
o 11.548 11.860 0 2 11.759 0

3P1
o 11.624 11.860 0 1 11.864 0.025 829

3P0
o 11.723 11.860 0 0 11.957 0

1P1
o 11.828 12.209 0.315 06 1 12.206 0.291 28

3p54p 3S1 12.907 12.976 0 1 12.945 0
3D3 13.076 13.372 0 3 13.287 0
3D2 13.095 13.372 0 2 13.332 24.234
3D1 13.153 13.372 0 1 13.404 0
1D2 13.273 13.501 113.40 2 13.459 52.543
3P0 13.282 13.572 0 0 13.575 34.635
1P1 13.302 13.572 0 1 13.567 0
3P2 13.328 13.572 0 2 13.598 38.244
3P1 13.480 13.572 0 1 13.634 0
1S0 13.845 13.781 161.45 0 13.806 127.76

aExperimental excitation energies are taken from Ref. 20.
bWhether we refer todOPA or dTPA is clear from the atomic selections rules.

TABLE IV. Nonrelativistic TDHF and relativistic TDDHF excitation energies,DE seVd, and one- and two-
photon absorption cross sectionssa.u.d, d, for krypton.

Configuration Desig. Expt.a

TDHF

J

TDDHF

DE db DE db

4p55s 3P2
o 9.915 10.254 0 2 9.931 0

3P1
o 10.033 10.254 0 1 10.125 0.151 56

3P0
o 10.563 10.254 0 0 10.619 0

1P1
o 10.644 10.609 0.375 60 1 10.800 0.233 79

4p55p 3S1 11.304 11.319 0 1 11.176 0
3D3 11.443 11.689 0 3 11.427 0
3D2 11.445 11.689 0 2 11.471 120.33
3D1 11.526 11.689 0 1 11.580 0
1D2 11.546 11.811 257.18 2 11.609 70.920
3P0 11.666 11.897 0 0 11.736 242.85
1P1 12.101 11.897 0 1 12.183 0
3P1 12.144 11.897 0 1 12.229 0
3P2 12.141 11.897 0 2 12.240 77.215
1S0 12.257 12.048 359.24 0 12.395 112.71

aExperimental excitation energies are taken from Ref. 21.
bWhether we refer todOPA or dTPA is clear from the atomic selections rules.
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results already for neon, see Table II. The 13D2, 1 1D2, and
1 3P2 states are split in energy by no more than 0.21 eV, and,
due to the electron spin-orbit coupling, the states therefore
mix effectively. A relativistic configuration interaction calcu-
lation on neon confirmed that there is strong mixing, and,
thus, it is not an artifact of the Hartree–Fock approximation.
As a consequence, the TPA cross sections are split over the
different states of equalJ value, and the two triplet states
acquire about half of the total intensity forJ=2. Considering
that neon is a second-row element, it is a surprising fact that
nonrelativistic calculations do not even provide a qualita-
tively correct description of the two-photon absorption, and,
in comparing intensities obtained with nonrelativistic and
relativistic methods, it is therefore necessary to use the inte-
grated TPA cross sections as reference values, e.g., two-
photon transition amplitudes will not be useful in this re-
spect. From Figs. 2 and 3 it is apparent that the integrated
two-photon intensities to states with bothJ=2 andJ=0 in
neon are virtually the same at the relativistic and non-
relativistic levels of theory—as we expect them to be.

The energy splitting of the 13D2, 1 1D2, and 13P2 states
in argon amounts to 0.27 eV at the TDDHF levelsto be
compared with 0.24 eV in experiment20d and, in this case,
the main part of the two-photon absorption intensity is attrib-
uted to the nonrelativistically spin-forbidden states. Also for
argon, it is clear from Fig. 4 that the relativistic effects on the
total cross sections forJ=2 andJ=0 states are very small.
Therefore, as far as the two-photon absorption spectrum is
concerned, the same quantum yield is predicted at the non-
relativistic and relativistic levels of theory, but there is a
significant relativistic broadening due to the large triplet in-

tensities. With respect to applications for optical power lim-
iting, this will be important since dynamic simulations of
laser pulse propagation in two-photon active materials are
strongly dependent on broadening of excited states.6

Beginning with krypton, there are strong relativistic ef-
fects also on the integrated TPA cross sections; the relative
differences between nonrelativistic and relativistic results for
dTPA are shown in Fig. 4. The theoretical and experimental21

energy splittings between the 13D2, 1 1D2, and 13P2 states
in krypton are as large as 0.77 and 0.70 eV, respectively.
Since the states with identical total angular momentum be-
come so spread in energy, it is increasingly difficult to com-
pare the nonrelativistic absorption cross sections to the rela-
tivistic ones. It is only when there is a clear separation in
energy between manifolds of excited states that we can make
a fair comparison with partially integrated absorption cross
sections. For krypton we believe the 4p55p manifold of
states to be sufficiently separated from other TP states in the
spectrum in order to make this comparison, but for xenon
sTable Vd and, in particular, radonsTable VId it is less mean-
ingful. Figures 2 and 3 do, however, report a comparison of
partially integrated TPA cross sections at the non-relativistic
and relativistic levels of theory with inclusion of as many
states that we were able to resolve in the calculations. We
believe that Fig. 4 provides a reasonable estimate of the rela-
tivistic effects for linear and nonlinear absorption.

As far as earlier theoretical work on two-photon absorp-
tion in the noble gases is concerned, we note that the firstab
initio calculations of the two-photon transition probabilities
for neon and argon were performed by Moccia and Rizzo in
1984.23 Using a sum-over-states approach and the random

TABLE V. Nonrelativistic TDHF and relativistic TDDHF excitation energies,DE seVd, and one- and two-
photon absorption cross sectionssa.u.d, d, for xenon.

Configuration Desig. Expt.a

TDHF

J

TDDHF

DE db DE db

5p56s 3P2
o 8.315 8.792 0 2 8.217 0

3P1
o 8.437 8.792 0 1 8.422 0.213 68

3P0
o 9.447 8.792 0 0 9.193 0

1P1
o 9.570 9.149 0.430 90 1 9.420 0.188 16

5p56p 3S1 9.580 9.669 0 1 9.352 0
3D3 9.686 10.039 0 3 9.577 0
3D2 9.721 10.039 0 2 9.594 348.05
3D1 9.789 10.039 0 1 9.723 0
1D2 9.821 10.151 579.80 2 9.758 168.27
3P0 9.934 10.251 0 0 9.858 752.12
1P1 10.956 10.251 0 1 10.720 0
3P1 11.055 10.251 0 2 10.812 21.308
3P2 11.069 10.251 0 3 10.814 0
1S0 11.141 10.343 876.75 1 10.845 0

5p57p 3S1 10.902 11.187 0 2 10.866 45.309
3D2 10.954 11.285 0 0 10.901 103.69
3D3 10.969 11.285 0 1 10.997 0
1D2 10.996 11.319 88.328 2 11.072 148.79
3D1 11.001 11.285 0 1 11.074 0
3P0 11.015 11.348 0 0 11.187 206.29

aExperimental excitation energies are taken from Ref. 22.
bWhether we refer todOPA or dTPA is clear from the atomic selection rules.
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phase approximation, they considered the1S0 and1D0 states
in neon and argon corresponding to the electronic transitions
2p→3p and 2p→4f sneond and 3p→4p and 3p→4f sar-
gond.

More recently, Hettemaet al.3 performed response
theory calculations of the off-diagonal elements in the TP

transition matrix tensorsSxy
0→fd for the1D2 state in neonscor-

responding to the 2p→3p electronic transitiond. Using the
Hartree–FocksHFd and the singles-and-doubles restricted ac-
tive spacesSD RASd methods, they reported excitation ener-
gies to be 20.106 eV and 19.170 eV, respectively, whereas
the corresponding TP transition matrix elements were re-

TABLE VI. Nonrelativistic TDHF and relativistic TDDHF excitation energies,DE seVd, and one- and two-
photon absorption cross sectionssa.u.d, d, for radon.

Configuration Desig. Expt.a

TDHF

J

TDDHF

DE db DE db

6p57s 3P2
o 6.772 8.117 0 2 6.552 0

3P1
o 6.942 8.117 0 1 6.822 0.290 43

3P0
o 10.660 8.117 0 c c

1P1
o 10.793 c c c c

6p57p 3S1 8.213 8.960 0 1 7.924 0
1D2 8.271 9.432 869.51 2 8.084 927.00
3D3 8.436 9.325 0 3 8.158 0
3D1 8.472 9.325 0 1 8.268 0
3D2 8.529 9.325 0 2 8.333 502.53
3P0 8.647 9.536 0 0 8.441 1868.1
1P1

d 9.536 0
3P2

d 9.536 0
3P1

d 9.536 0
1S0

d 9.602 1348.5

6p58p 3S1 9.552 10.420 0 1 9.258 0
1D2 9.567 10.550 131.87 2 9.300 82.208
3D3 9.622 10.517 0 3 9.333 0
3D1 9.631 10.517 0 1 9.361 0
3D2 9.649 10.517 0 2 9.384 91.767
3P0 9.691 10.580 0 1 9.384 0
1P1

d 10.580 0 0 9.425 384.64
3P2

d 10.580 0 2 9.879 39.218
3P1

d 10.580 0 3 9.915 0
1S0

d 10.614 287.59 1 9.940 0
2 9.968 79.222
0 10.024 360.21

aExperimental excitation energies are taken from Ref. 22.
bWhether we refer todOPA or dTPA is clear from the atomic selections rules.
cCould not be resolved in the calculations.
dWas not presented in the tables used, Ref. 22.

FIG. 1. The TDHF and integrated TDDHF oscillator strengths.
FIG. 2. The TDHF and integrated TDDHF two-photon absorption cross
sections for states withJ=2.
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ported to be 2.9663 a.u. and 3.3450 a.u. The calculations of
Hettemaet al. do not refer to monochromatic TPA. Instead,
the energy of one of the two incident photons was held fixed
at 9.320 eV, which corresponds to 46.4% and 48.6% of the
HF and SD RAS excitation energy, respectively. Disregard-
ing this lack of monochromaticity, it is concluded that our
nonrelativistic results of 20.129 eV and 2.8801 a.u. for the
transition energy and TP matrix element, respectively, are in
good agreement with the reference data. Our relativistic val-
ues for the same properties are 20.090 eV and 2.0510 a.u.,
respectively, which, at sight, may appear conspicuous. How-
ever, this discrepancy between relativistic and nonrelativistic
values is entirely due to the leakage of intensity discussed
above. As mentioned above, it is not appropriate to add the
contribution toS0→f from the other states with identicalJ
values, since this comparison must instead be performed for
the cross sections that correspond to the physical observable
in this case.

For the corresponding1D2 state in argon, the monochro-
matic TP matrix elementSxy

0→f has been calculated by Sund-
holm et al.24 with means of HF and complete active space
sCASd response theory. Excitation energies and tensor ele-

ments were reported to be 13.485 and 13.185 eV and 9.499
and 10.424 a.u. at the HF and CAS levels, respectively. In
the present work, the corresponding nonrelativistic results
amount to 13.501 eV and 9.222 a.u. and again we conclude a
good agreement with previous literature values.24

To date, the most accurate nonrelativistic results for the
monochromatic two-photon absorption cross sections in the
noble gases are those of Hättig and co-workers.4 They have
applied a hierarchical set of coupled cluster response meth-
ods, using the taug-cc-pV5Z basis set,16–18 in order to study
the lowest two-photon transitions in helium, neon, and argon.
Their best values correspond to coupled cluster calculations
with inclusion of single and double excited configurations
sCCSDd. For the1S0 state in helium an excitation energy of
20.615 eV and a cross section of 12.306 a.u. are reported.4

Our uncorrelated result for the cross section is 10.426 a.u.,
which agrees well with the correlated result. On the one
hand, we expect the description of TP states that are spectro-
scopically separated from the linear absorption spectrum to
be influenced by two electron excited configurations, and the
random phase approximation may in such cases not be accu-
rate. One example of this situation is given by theX 1Ag
→2 1Ag transition intrans-butadiene. But, on the other hand,
for the noble gases the very large band gap prohibits the
coupling to the doubly electron excited configurations, and
our one-electron propagator approximation is therefore war-
ranted in this case.

As mentioned above with respect to excitation energies,
the effects of electron correlation are larger in neon than for
any of the other atoms. In comparing our nonrelativistic un-
correlated results with the CCSD values of Hättig and
co-workers,4 it becomes clear that also the two-photon ab-
sorption cross sections in neon are strongly affected by elec-
tron correlation. For example, the TPA cross section of the
1D2 state in neon is underestimated by almost 50% at the
Hartree–Fock level of theoryfCCSD results areDE
=18.532 eV anddTPA=19.915 a.u.sRef. 4dg, and the close
agreement between uncorrelated and correlated results that
we observe for the1S0 state is regarded as fortuitousfCCSD
results areDE=18.855 eV anddTPA=12.559 a.u.sRef. 4dg.
So electron correlation does play a significant role in calcu-
lations of the two-photon spectrum of neon when quantita-
tive values for transition energies and intensities are desired,
but the nonrelativistic approaches will inevitably fail at pro-
viding the leakage of intensity into the triplet manifold of
states that we discussed earlier. We are not aware of any
experimental two-photon spectra for neon, but, if measured,
we predict a splitting of the absorption lines in accordance
with the cross sections reported in Table II.

Finally, in comparison with the CCSD reference data of
Hättig and co-workers,4 we note that the quality of the
Hartree–Fock results for the TPA cross sections in argon is
relatively high. The CCSD results for the1D2 state areDE
=13.218 eV anddTPA=104.59 a.u., and, for the1S0 state,
results areDE=13.487 eV anddTPA=197.71 a.u.4 The non-
relativistic Hartree–Fock results for the TPA cross sections
given in Table III are in good agreement with the electron
correlated results, and, in addition with the favorable com-
parison between experimental and Hartree–Fock values of

FIG. 3. The TDHF and integrated TDDHF two-photon absorption cross
sections for states withJ=0.

FIG. 4. The relativistic effects on the oscillator strengths and the two dif-
ferent two-photon absorption cross sections.sNote that the oscillator
strengths has not been calculated for radon.d
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the excitation energies, we conclude that we account for a
relatively accurate description of the electronic structure of
ground and excited states in argon. We therefore argue that
the strong two-photon absorption intensities of the triplet
states shown in Table III at the relativistic level of theory
should not be an artifact and due to lack of electron correla-
tion in our treatment.

V. CONCLUSIONS

We report a first implementation of the response theory
expression for the two-photon absorption matrix element at
the four-component level of theory. We employ the Kramers
restricted Hartree–Fock approximation with a direct atomic
orbital driven construction of the Fock-type matrices needed
in the evaluation of the response functions. The computa-
tional strategies and formulations parallel those for the qua-
dratic response function at the same level of theory.13

A sample application in terms of the monochromatic
two-photon absorption cross sections in the noble gases is
presented. The calculations show enhanced relativistic ef-
fects on the property with the atomic number. A more con-
spicuous observation is the strong leakage of two-photon ab-
sorption cross section into the triplet manifold of states that
occur for light as well as heavy elements. This effect, which
is due to the electronic spin-orbit coupling, will provide
splittings of absorption lines in the two-photon spectra. The
present work underlines the need for inclusion of relativistic
effects in two-photon absorption calculations in general.
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An implementation of the second-order residue of the quadratic response function is presented in the
four-component Hartree-Fock approximation, and the calculation of first-order properties of
electronically excited states can thereby be achieved. Results are presented for the excited state
electric dipole moments of the valence excited states in CsAg and CsAu. For CsAg, and even more
so for CsAu, nonscalar relativistic effects on this property may be substantial, e.g., at the
four-component level of theory, the excited-to-ground state dipole moment difference �� ranges
from 1.994 to 4.110 a.u. for the six components of the 1 3� state in CsAg, whereas, at the scalar
relativistic level of theory, the common value of �� is 2.494 a.u. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2436877�

I. INTRODUCTION

First-order molecular properties provide the linear cor-
rection to the molecular energy in the presence of a perturb-
ing external or internal electromagnetic field and it also gov-
erns the linear absorption of radiation or, equivalently, the
one-photon absorption. Whereas the determination of first-
order properties of electronic ground states can be done to a
high accuracy both in experiment and theory, the contrary is
often true for excited states which is a fact that is prohibitive
for the understanding of the photophysics of chromophores.
For example, the electric dipole moment is a property that
provides information about the molecular and electronic
structure of short-lived electronically excited states. It deter-
mines the course of a photochemical transformation as well
as the tunability in the emission energy as a function of the
solvent polarity. In addition, the difference in dipole moment
between the excited and the ground state ���=�e−�g� is a
key parameter in the understanding and design of nonlinear
optical materials.1–5 In connection with the design of nonlin-
ear optical materials, it is also important to address the ex-
cited state absorption and to understand the interplay be-
tween coherent nonlinear absorption in the ground state and
the linear absorption in the excited state.6–8

There are several experimental techniques for determin-
ing the electric dipole moment of excited states, but a com-
mon denominator is that they measure the dependence of a
transition energy with respect to an external electric field
�either applied or from a polar solvent�. Techniques based on
solvent induced absorption or emission shifts for the deter-
mination of �� are time-resolved microwave dielectric ab-
sorption measurements,9 solvatochromatic absorption and
fluorescence shifts,10,11 and thermochromic shifts of the sol-

vent polarity.12 An alternative to the solvent based ap-
proaches is offered by high-resolution optical Stark measure-
ments on molecular beams.13

As far as the development of quantum chemical methods
for the calculations of excited state properties is concerned,
there are two main routes to follow. The first, and most
straightforward, alternative is based on the optimization of
the electronic density of the excited state, or states if it is a
transition process, with a subsequent evaluation of the prop-
erty of interest.14 Such an approach does not maintain or-
thogonality among states and is limited to electronic struc-
ture methods that do provide an accurate description of the
often complex, open-shell, nature of the excited states. The
second alternative is based on a residue analysis of the non-
linear response functions of the ground state;15 it avoids the
explicit reference to the excited states and only the ground
state wave function needs to be optimized. The method is
gauge invariant in its exact as well as approximate state for-
mulations, and it enables the determination of excited state
properties also in the single determinant approximation �such
as Hartree-Fock and Kohn-Sham theories�. In approximate
molecular electronic structure theory, we refer to the general
formulation of time-dependent perturbation theory by Olsen
and Jørgensen as response theory.16

In 1992, Hettema et al.17 presented an implementation of
the first-order nonlinear response function in the multicon-
figuration self-consistent field approximation, and since then
it has been implemented for most standard electronic struc-
ture methods including the nonrelativistic second-order
Møller-Plesset,18 coupled cluster,19–22 and density functional
theory23 methods and the relativistic four-component
Hartree-Fock method.24,25 The present work continues this
line of development with an implementation of the second-
order residue of the quadratic response function at the four-
component Hartree-Fock level of theory. The motivation for
our work is that it enables the determination of first-ordera�Electronic mail: panor@ifm.liu.se
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properties of electronically excited states for molecules that
include heavy elements, such as, for instance, inorganic or
organometallic compounds. Four-component approaches
provide accurate treatment of relativistic effects. The results
in the present work are adopting the instantaneous Coulom-
bic electron-electron interaction but the theory and imple-
mentation is open-ended towards improvements, such as the
Breit interaction, in the Hamiltonian. With the present
Hamiltonian we take full account of the spin-own-orbit in-
teraction, and we expect that corrections due to the spin-
other-orbit interactions will be small for the properties of
interest. The main uncertainty in the presented four-
component results will be due to the neglect of electron cor-
relation, and we see our work as the basis for future devel-
opments of the quadratic response function at various
electron correlated levels of theory.

In the next section, we will make a brief presentation of
the theory and point out the key points that distinguish it
from its nonrelativistic counterpart in Ref. 17. We will then
illustrate our work by determining the electric dipole mo-
ment of the valence excited states of CsAg and CsAu.

II. THEORY AND METHODOLOGY

The DIRAC program26 includes modules for the calcula-
tion of linear27 and quadratic24,25 response functions at the
relativistic four-component Hartree-Fock level of theory,
and, in this work, we extend these functionalities to include
first-order properties and transition moments of excited
states. Our formulation follows that of the previous work and
the implementation has been integrated with the existing
modules of the program.

Our starting point is the Hartree-Fock ground state �0� of

an unperturbed Hamiltonian Ĥ0. The time-dependent per-
turbed state is expressed using the exponential parametriza-
tion

���t�� = ei�̂�t��0�, �̂�t� = �
n

�n�t�q̂n
†, �1�

where the operator �̂�t� is a Hermitian linear combination of
excitation �q̂+�n�

† = âa
†âi� and deexcitation operators �q̂−�n�

†

= âi
†âa� that transfer electrons from occupied i to virtual or-

bitals a. Hermiticity imposes the constraint �−n�t�=�n
*�t� on

the orbital transfer amplitudes.
The main difference compared to the nonrelativistic case

is that one-particle states ��r� in the four-component formal-
ism take the form of complex bispinors

��r� = ��L��r�,�L��r�,�S��r�,�S��r��T, �2�

and the one-electron part of the Hamiltonian is given by

ĥD = c�̂ · p̂ + �̂mc2 + V̂en, �3�

where the Dirac-Pauli representation is chosen for the Dirac

matrices ��̂, �̂1, �̂2, and �̂3� and V̂en denotes the Coulomb
potential from the nuclei multiplied with the electronic
charge. To a first approximation, the two-electron part is
formed from the instantaneous Coulomb interactions but ad-
ditional terms such as the Gaunt or full Breit corrections may

well be included. The perturbation added to the Hamiltonian
is taken to be of the form

V̂�t� = �
�

	��t�X̂�, �4�

where 	��t� is the time-dependent strength of the perturbing

field and X̂� is the coupling operator between the field and
the quantum mechanical system along the molecular axis �.
The eigenvalues of the one-particle Hamiltonian in Eq. �3�
�or Fock operator in the many-electron case� are split into
two groups separated by twice the electron rest energy and
the corresponding states are referred to as “electronic” and
“positronic” in the respective groups. The excitation opera-
tors q̂n

† can excite the electrons from the occupied to virtual
electronic orbitals as well as to the manifold of positronic
orbitals. In a matrix representation one can, by exploiting the
time reversal and quaternion symmetry of bispinors, reduce
the dimension of operator matrices that need to be stored and
diagonalized by a factor of 2, as explained by Saue et al.28,29

and in the context of quadratic response by Norman and
Jensen.24

The time dependence of the orbital transfer amplitudes
�n�t� is determined by perturbation theory, and the resulting
equations of motion for the amplitudes are in general ap-
proximate state theory coupled and therefore solved in the
frequency domain, rather than in the time domain. To linear
order in the perturbation field strengths 	�, one arrives at a
matrix equation that reads as21

�E�2� − 
S�2�����
� = g�. �5�

The frequency independent matrices are obtained from the
expressions

Enm
�2� = − �0��q̂−n

† ,�q̂m
† ,Ĥ0���0�, Snm

�2� = �0��q̂−n
† , q̂m

† ��0� ,

�6�
gn

� = �0��q̂−n
† ,X̂���0� .

Because of Wigner’s 2n+1 rule, the linear response of the
wave function is sufficient to determine the quadratic re-
sponse functions and, in particular, their residues. For our
purposes it is therefore sufficient to determine the linear re-
sponse in the orbital transfer amplitudes �Eq. �5��.

Although the exact many-body energy eigenstates �k�
and excitation energies 
k are not available, it is instructive
to consider the sum-over-state expression for the quadratic
response function, i.e.,

��X̂�;X̂�,X̂���
�,
�
= − �

P
�

k,l�0

�0�X̂��k��k�X̄��l��l�X̂��0�
�
� + 
k��
� − 
l�

,

�7�

where X̄�= X̂�− �0�X̂��0� and �P generates the sum of terms
obtained from permutations of the indices �, �, and �. Ex-
cited state properties and transition moments appear in the
numerators and may be obtained as residues of the exact
quadratic response functions. Response theory therefore con-
stitutes a natural framework for calculating excited state tran-
sition moments. Moreover, the formalism is sufficiently ge-
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neric to be directly applicable at the four-component
relativistic level of theory.

Returning to the Hartree-Fock approximation, we obtain
representations of the excited states by solving the general-
ized eigenvalue equation

E�2�U = S�2�U� , �8�

where 
kl=sgn�k�
�k��kl is a diagonal matrix containing the
excitation energies. The kth column U�k� of U represents the
kth excited state. Within the Hartree-Fock approximation, an
excited state transition moment may be obtained, in analogy
with the exact case, as a residue of a quadratic response
function21

�k�X̂��l� − �kl�0�X̂��0�

= �F� + G�− 
k,
 f����
k − 
 f��U�−k�U�f�, �9�

where

Fkl
� = 1

2�P �0���X̂�, q̂k
†�, q̂l

†��0� �10�

and

Gklm�
�,
�� = 1
6�P ��0����Ĥ0, q̂k

†�, q̂l
†�, q̂m

† ��0�

+ �
� + 
���0���q̂k
†, q̂l

†�, q̂m
† ��0�� . �11�

Our implementation is Kramers restricted and handles
the spatial D2h point group and subgroups thereof and it ex-
ploits the quaternion symmetry of four-component wave
functions.28,29 Furthermore, since we employ the first-order
polarization propagator approach, or random phase approxi-
mation, we can provide an accurate description only for ex-
cited states that are dominated by single excitations.

The perturbation operator �Eq. �4�� is assumed to be a
one-electron operator and the two-electron Hamiltonian op-
erator is handled by constructions of modified Fock matrices
but with the generic routines in the program. That means that
the computational scaling of the implementation of first-
order excited state properties parallels that of other parts of
the program, such as the self-consistent field optimization of
the electron density. A discussion on the computational scal-
ing of the evaluation of the quadratic response function at the
four-component Hartree-Fock level of theory is found in Ref.
30.

The program flow in the excited state property module is
such that, for each irreducible representation, Eq. �8� is
solved to obtain the requested number of excited states and
transition frequencies, and then Eq. �5� is solved for all re-

quested operators X̂� and frequencies corresponding to the
excitation energies. Finally, the excited state properties and
moments are assembled according to Eq. �9�.

III. SAMPLE CALCULATIONS

We illustrate our implementation with calculations of the
electric dipole moment of the lowest valence excited states
of CsAg and CsAu. These systems have been the subject for
previous studies concerned with spectroscopic constants,
dissociation energies, and ground state dipole moments31,32

as well as excitation energies, polarizabilities, and
hyperpolarizabilities.24 CsAu �but not CsAg� has been ob-
served experimentally in solid, liquid, and gas phases.

A. Computational details

We have used the bond lengths of 3.316 and 3.263 Å for
CsAg and CsAu, respectively, which correspond to the opti-
mized structures at the relativistic coupled cluster singles and
doubles �CCSD� with perturbative triples level of theory.31

The molecules are placed with the coinage metal atoms at
the origin and Cs pointing along the positive z axis, a direc-
tion which thereby coincides with that of the ground state
dipole moment.

For the all-electron calculations, we have employed the
uncontracted dual family Gaussian basis sets from the work
of Fossgaard et al.31 and augmented these with diffuse func-
tions. The exponents added were determined from a geomet-
ric series based on the two smallest exponents in each shell
of the original basis sets, and the sizes of the final basis sets
were �23s19p13d4f�, �23s18p11d2f�, and �24s19p15d9f�
for Ag, Cs, and Au, respectively. For the calculations using
relativistic effective-core potentials �ECPs�, we have used
the Stuttgart ECPs �Ref. 33� together with the valence parts
of the basis sets described above. The sizes of the employed
valence basis sets were �11s10p8d4f�, �10s9p6d2f�, and
�10s8p8d3f� for Ag, Cs, and Au, respectively, and the num-
ber of electrons included in our wave function parametriza-
tion with ECPs were 19, 9, and 19 for Ag, Cs, and Au,
respectively.

In the four-component calculations we represented the
nuclei with Gaussian charge distributions with exponents of
2.0389�108, 1.7951�108, and 1.4223�108 a.u. for silver,
cesium, and gold nuclei, respectively. The small component
basis sets were generated from the large component ones by
adopting the condition of restricted kinetic balance. The four-
component calculations make full account for polarization of
the electronic states due to the positronic states, i.e., all e-p
rotations are included in the response calculations, and the
purely small component integrals �SS �SS� are included in the
calculations. Approximations in the calculations of quadratic
response functions can be made without significant loss in
accuracy30 but, due to the modest size of the systems in the
present work, such approximations have not been called for.

The nonrelativistic as well as the ECP calculations have
been performed with a version of the DALTON program34 that
has been extended to include the Coulomb attenuated
exchange-correlation functional CAM-B3LYP by Peach
et al.,35 whereas the four-component calculations have been
performed with a locally modified version of the DIRAC

program.26

B. Results and discussion

The chemical bonds between the coinage metal atoms
and cesium are strongly polar and the ionicity is to a large
extent attributed to the relativistic contractions of the 5s and
6s orbitals of silver and gold, respectively.31 We have deter-
mined the electronic properties of the ground and valence
excited states at the ground state equilibrium geometry, and
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our results are therefore mainly pertinent to absorption spec-
troscopy since in emission spectroscopy nuclear relaxation in
the excited state is an issue. An extension of response theory
to include nuclear dynamics in the excited state has been
done in the nonrelativistic realm �see, e.g., Ref. 36� but such
a consideration is beyond the scope of the present work.

1. Absorption spectra

The vertical electronic absorption spectra of CsAg and
CsAu as given in the four-component Hartree-Fock approxi-
mation have been presented and discussed by Norman and
Jensen.24 Excitation energies and oscillator strengths of the
low-lying states are reported also in this work and differ
slightly from those in Ref. 24 due to inclusion of diffuse
functions to the basis sets. In the nonrelativistic �and spin-
free� calculations, the states are characterized by their total
separate spin and orbital angular momentum projection on
the bond axis, whereas, in the relativistic calculations, the
generator of rotations about the internuclear axis is the total

angular momentum operator Ĵz and the states are character-
ized by the corresponding quantum number MJ. The relativ-
istic selection rule for one-photon absorption is �MJ= ±1 or
�MJ=0 with maintained symmetry with respect to �v reflec-
tions.

In Tables I and II we present results from Hartree-Fock
calculations at the nonrelativistic �NR�, the spin-free �SF�,37

and the fully relativistic four-component �4C� levels of
theory. The SF calculations include scalar relativistic effects

only, and by comparing SF and 4C results it is thus possible
to quantify the importance of spin-orbit interactions. The
lowest state in CsAg is the 1 3� state �the state is not re-
solved in the nonrelativistic calculation due to the problem of
triplet instability�, which in the four-component calculations
corresponds to the set of states 	0−,0+ , ±1 , ±2
 that are spin
orbit splitted by 0.27 eV. Next follows two states of 3�+

symmetry with nonrelativistic transition energies of 0.534
and 1.526 eV, respectively. The spin-orbit splittings in these
states are less than 0.01 eV and the relativistic corrections to
the excitation energies are almost fully retrieved at the scalar
relativistic level of theory. The optical characteristics of
CsAg in the visible region are governed by the 1 1�+ and
1 1� states with NR values for �E that equal to 1.746 and
2.107 eV, respectively. For the valence transitions within the
singlet manifold in CsAg, it is in general seen that the spin-
orbit effects are negligible.

If we turn attention to CsAu �see Table II�, it is clear that
nonscalar relativistic effects become more prominent and a
nonrelativistic labeling of states is less meaningful. In this
case the optically most active states are the 0+ state with
�E=2.551 eV and the twofold degenerate �MJ�=1 state with
�E=3.129 eV. As a consequence of the large relativistic
contraction of the gold 6s orbital, the discrepancies in the
nonrelativistic spectrum are substantial, both with respect to
transition energies and intensities �as governed by the oscil-
lator strengths�. The nonrelativistic excitation energies se-
verely underestimate the relativistic ones �e.g., the NR tran-

TABLE I. Excitation energies �eV�, dipole moments �a.u.�, and oscillator strengths for the low-lying states of nonrelativistic �+ and � symmetries in CsAg.
The total angular momentum MJ labels the states in the relativistic calculations. The superscript on states with MJ=0 indicates the symmetry under �v

reflections.

Sym

Nonrelativistic Spin-free

�MJ�

Four component

�E �� f �E �� f �E �� f

3� a a a 0.381 2.494 0 0− 0.215 4.110 0
0+ 0.234 3.959 0.0000
1 0.373 2.427 0.0000
2 0.489 1.994 0

3�+ 0.534 −4.714 0 0.694 −4.226 0 0− 0.701 −4.085 0
1 0.699 −4.099 0.0000

3�+ 1.526 1.258 0 1.810 1.096 0 0− 1.809 1.065 0
1 1.810 1.068 0.0000

1�+ 1.746 −3.480 0.3377 1.918 −3.573 0.3438 0+ 1.919 −3.572 0.3427
1� 2.107 −1.324 0.3859 2.347 −1.456 0.3631 1 2.348 −1.475 0.3608
3�+ 2.265 −6.137 0 2.551 −6.168 0 0− 2.544 −5.665 0

1 2.550 −5.944 0.0020
3� 2.292 −4.814 0 2.574 −4.877 0 0+ 2.563 −4.841 0.0019

0− 2.574 −5.348 0
1 2.580 −5.059 0.0001
2 2.588 −4.886 0

1�+ 2.495 −4.159 0.0220 2.774 −3.848 0.0185 0+ 2.776 −3.840 0.0188
1�+ 2.680 1.279 0.1070 2.905 0.368 0.1005 0+ 2.907 0.342 0.0997
1� 2.670 −2.488 0.0468 2.960 −2.443 0.0510 1 2.962 −2.450 0.0506
3�+ 2.874 −3.615 0 3.131 −5.270 0 0− 3.133 −5.261 0

1 3.133 −5.261 0.0000
1�+ 3.001 −2.942 0.0042 3.254 −2.952 0.0017 0+ 3.256 −2.909 0.0018
3�+ 2.996 2.184 0 3.267 4.456 0 0− 3.269 4.437 0

1 3.269 4.441 0.0000

aThe states are triplet instable and therefore not reported.
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sition energy of the 1 1� state is 0.96 eV below its
relativistic counterpart for the �MJ�=1 state�, whereas the
situation is reversed for the oscillator strengths �e.g., the os-
cillator strength of the nonrelativistic 1 1� state is exceeding
that of the relativistic �MJ�=1 state by 57%�. In a.u., the
expression for the oscillator strength is

f0n =
2�E

3 �
�

��0��̂��n��2, �12�

where �̂� is the electric dipole moment operator along the
molecular axis �. It is therefore clear that the reason for the
overestimated oscillator strengths in the nonrelativistic limit
is due to severely overestimated transition dipole moments,
as also shown in Ref. 24.

2. Excited state dipole moments

From the double residue of the quadratic response func-
tion, which forms the basis for our implementation, the
emerging quantity is the excited-to-ground state difference in
properties. The excited state property is retained only after
adding the ground state property obtained at the same level
of theory. But, as mentioned in Sec. I, measurements of ex-
cited state dipole moments are based on chromatic shifts
which are also dependent on ��=�e−�g, so, in the tables,
we have chosen to present �� and �g rather than �e. The
excited-to-ground state difference in dipole moments is a di-
rect reflection of the electronic charge flow in the absorption

process. The ground state dipole moments at the four-
component Hartree-Fock level are 3.612 and 4.261 a.u. for
CsAg and CsAu, respectively, which, considering the bond
lengths, correspond to effective charges of −0.58e and
−0.69e on silver and gold in the respective compounds. Our
act of expressing the dipole moments in this work as atomic
charge shifts is of course not to be taken literally but as a
convenient measure of dipole moments and dipole moment
fluctuations.

The results for �� in CsAg are presented in Table I. In
connection with the lowest transition, i.e., 1 3�←X 1�+,
there is an electron charge flow from cesium to silver that is
increasingly pronounced with diminishing projection of the
angular momentum along the bond axis. For the �MJ�=2 and
0− states the effective charges on silver are reduced from
−0.57e by another −0.32e and −0.67e, respectively. The dif-
ference in charge flow between the different components of
the 1 3� state is a pure effect of spin-orbit coupling, and the
nonrelativistic and scalar relativistic calculations therefore
predict intermediate values for the charge flows but identical
for all six state components. In contrast we note that, in the
1 3�+←X 1�+ transition, electron charge flows from silver to
cesium and the effective charges of silver in the �MJ�=1 and
0− states are almost identical and equal to about +0.08e. In
other words, in this transition silver returns more electron
charge than it retrieved in the formation of the ionic bond in
the ground state. The optically active states �1 1�+ and 1 1��
both have a reduced dipole moment as compared to the

TABLE II. Excitation energies �eV�, dipole moments �a.u.�, and oscillator strengths for the low-lying states of nonrelativistic �+ and � symmetries in CsAu.
The total angular momentum MJ labels the states in the relativistic calculations. The superscript on states with MJ=0 indicates the symmetry under �v

reflections.

Sym

Nonrelativistic Spin-free

�MJ�

Four component

�E �� f �E �� f �E �� f

3� a a a 1.545 0.337 0 0− 1.261 0.442 0
1 1.454 0.218 0.0005
0+ 1.347 0.446 0.0007
2 1.670 0.316 0

3�+ 0.669 −4.040 0 1.722 −2.694 0 1 1.765 −2.263 0.0000
0− 1.775 −2.444 0

3�+ 1.694 1.123 0 2.674 −0.577 0 1 2.664 −0.923 0.0011
0− 2.668 −0.880 0

1�+ 1.804 −3.743 0.3392 2.531 −5.069 0.2067 0+ 2.551 −5.073 0.2030
1� 2.173 −1.385 0.4071 3.107 −2.228 0.2647 1 3.129 −2.205 0.2599
3�+ 2.371 −5.565 0 3.419 −6.334 0 0− 3.434 −5.821 0

1 3.440 −6.079 0.0005
3� 2.442 −4.243 0 3.470 −5.156 0 0+ 3.461 −5.093 0.0059

0− 3.477 −5.554 0
1 3.490 −5.253 0.0001
2 3.504 −5.054 0

1�+ 2.633 −2.726 0.0160 3.573 −2.899 0.0319 0+ 3.598 −2.888 0.0319
1�+ 2.755 0.071 0.1126 3.730 −2.041 0.1055 0+ 3.752 −2.146 0.1000
1� 2.793 −1.112 0.0351 3.818 −1.898 0.0499 1 3.838 −1.995 0.0457
3�+ 2.960 −4.940 0 3.975 −5.721 0 0− 3.992 −5.211 0

1 3.994 −5.291 0.0004
3� 2.974 1.701 0 4.074 1.138 0 1 4.100 1.128 0.0000

2 4.100 1.129 0
0+ 4.134 −3.703 0.0048

aThe states are triplet instable and therefore not reported.
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ground state; in the former state the effective charge on silver
is −0.006e and in the latter it is −0.34e. Spin-orbit effects are
of course insignificant for the properties of the 11�+ state
due to the zero spin and orbital angular momentum in this
state and since it is a case of L-S coupling; the scalar rela-
tivistic effects on �� amount to less than 3%. In the 1 1�
state, relativistic effects on �� amount to 10%, out of which
1.3% is attributed to spin-orbit coupling.

The results for �� in CsAu are presented in Table II.
Whereas the 1 3�←X 1�+ transition in CsAg was accompa-
nied by large flow of electron charge from Cs to the coinage
metal atom, this is not the case in CsAu where the charge
transport amounts to 0.04e–0.07e for the different state com-
ponents. In the lowest nonrelativistically dipole allowed tran-
sition �1 1�+←X �+1�, there is a large change in the dipole
moment ���=−5.073 a.u.� which corresponds to a charge
transfer of 0.82e from gold to cesium. Charge flows in the
same direction but to a lesser extent in the 1 1�←X 1�+

transition; the change in dipole moment equals −2.205 a.u.,
which corresponds to a charge transfer of 0.36e.

3. Effects of electron correlation

So far, we have made accurate account of relativistic
effects in the calculation of excited state dipole moments, but
made no estimate of errors concerned with the neglect of
electron correlation. We mentioned in the Introduction that
our development of the double residue of the quadratic re-
sponse function in this work is to be seen as a first step
towards future implementations for electron correlated four-
component methods. Nevertheless, we can already, at this
point, estimate the quality of our results for �� of CsAg and
CsAu with respect to electron correlation by employing
implementations made for nonrelativistic electronic structure
methods in conjunction with the use of relativistic effective-
core potentials. We will focus our attention at the lowest

optically active states which are referred to as 1 1�+ and
1 1� in a nonrelativistic framework. In doing so we avoid
the 3� states, where valence spin-orbit effects proved large
already for the lighter CsAg compound and where the ECP
approach as well as scalar relativistic methods are bound to
fail.

Before turning to the question of electron correlation, let
us start by evaluating the potential accuracy of the ECP ap-
proach in the favorable cases of the optically active states.
The four-component Hartree-Fock results for �E of the
1 1�+ and 1 1� states of CsAg and CsAu are 1.919, 2.348,
2.551, and 3.129 eV, respectively, and the errors in the cor-
responding nonrelativistic calculations are −0.17, −0.24,
−0.75, and −0.96 eV �see Table III�. With the use of small-
core ECPs the errors are reduced to +0.02, +0.02, −0.02, and
0.00 eV. The accuracy of the ECP calculations are not quite
as high for the quadratic response property ��. With main-
tained ordering of states and molecules, we note discrepan-
cies for the �� results of 3%, 10%, 26%, and 37% in the
nonrelativistic calculations and 6%, 11%, 3%, and 3% in the
ECP calculations. For �� in CsAu the relativistic effects are
well reproduced in the ECP calculations, whereas in the case
of �� in CsAg the relativistic effects are quite small and
thereby error sensitive for that reason. We estimate the error
bar in the uncorrelated ECP calculations of �� to be
0.20 a.u. and expect that error bar to give a fair indication of
the accuracy also in the correlated ECP calculations on the
optically active states.

The inclusion of electron correlation strengthens the
bonds in the compounds,31 which is accompanied by en-
hanced ground state dipole moments, see Table III. At the
relativistic CCSD�T� level of theory, the ground state dipole
moments were reported by Fossgaard et al.31 to be equal to
4.206 and 4.615 a.u. for CsAg and CsAu, respectively. Using
ECPs, our CCSD results for �g of CsAg and CsAu are 3.983

TABLE III. Excitation energies �eV� and dipole moments �a.u.� of the lowest nonrelativistically dipole allowed
states in CsAg and CsAu.

Method �g

1 1�+ 1 1�

�E �� �E ��

CsAg
HF NR 3.540 1.746 −3.480 2.107 −1.324

ECP 3.531 1.936 −3.366 2.373 −1.308
SF 3.615 1.918 −3.573 2.347 −1.456
4C 3.612 1.919 −3.572 2.348 −1.475

DFTa NR 3.646 1.913 −3.879 2.254 −2.590
ECP 3.704 2.131 −3.718 2.866 −2.568

CCSD ECP 3.983 2.290 −4.724 3.093 −2.682

CsAu
HF NR 3.576 1.804 −3.743 2.173 −1.385

ECP 4.210 2.533 −4.897 3.127 −2.145
SF 4.261 2.531 −5.069 3.107 −2.228
4C 4.261 2.551 −5.073 3.129 −2.205

DFTa NR 3.690 2.004 −4.182 2.625 −2.417
ECP 4.228 2.740 −5.039 3.673 −2.713

CCSD ECP 4.440 3.057 −5.596 3.993 −2.956

aRefers to calculations with the CAM-B3LYP exchange-correlation functional.
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and 4.440 a.u., respectively, which indicate that the ground
state ionicity is slightly underestimated at the CCSD/ECP
level of theory. For the excited-to-ground state dipole mo-
ment differences the CCSD/ECP results are the best refer-
ence values that we can produce at this time.

We have also reported results obtained at the density
functional theory �DFT� level using the Coulomb attenuated
hybrid exchange-correlation functional CAM-B3LYP �Ref.
38� and ECPs. We are primarily interested in these results in
order to get an indication of the performance that one can
expect from a future implementation of the quadratic re-
sponse function at the four-component DFT level of theory.
It has been noted above that the valence transitions of inter-
est are associated with large reorganization of electron
charge, and it therefore becomes important to have an appro-
priate long-range Coulomb interaction to describe the
electron-hole interaction correctly. For that reason we have
utilized the Coulomb attenuated functional proposed by
Yanai et al.38 Using the CCSD results as reference, we see
that the DFT calculations of �� in the 1 1� state of CsAg
and CsAu capture 92% and 70% of the correlation effects.
This is a very promising performance for such a sensitive
property as the second-order residue of the quadratic re-
sponse functions in a system with large redistribution of
electron charge at the resonances of interest. However, turn-
ing to the calculations of the dipole moment of the 1 1�+

states in the two molecules, the DFT results are far from
convincing—as little as 26% and 20% of the correlation ef-
fects are accounted for in the DFT calculations. We are in-
clined to believe that the difficulties for DFT to correctly
describe the change in dipole moment in the 1 1�+←X 1�+

transition are attributed to the very large reorganization of
charge that takes place and which makes the calculation ex-
traordinarily sensitive to the description of the long-range
Coulomb interactions: the charge transfers of this transition
are 0.57e and 0.82e in CsAg and CsAu, respectively. In the
1 1�←X 1�+ transition the charge transfers are much less;
they amount to 0.23e and 0.36e for CsAg and CsAu, respec-
tively. The larger flow of charge in the latter case correlates
very well with the reduced performance of DFT �capturing
only 70% of the correlation effects�, and there seems to be a
limit of charge transfer somewhere around 0.25e beyond
which the use of the current functional is not reliable for
calculations of excited state dipole moments.

IV. CONCLUSIONS

We have presented an implementation of the second-
order residue of the quadratic response function in the four-
component Hartree-Fock approximation and can thereby de-
termine first-order properties of electronically excited state.
Apart from being restricted to one-electron properties, the
implementation is general and in the present work illustrated
by the calculation of the dipole moment of the valence ex-
cited states in CsAg and CsAu. The accuracy of results with
respect to relativistic effects is set by the representation of
the relativistic electron-electron interaction operator in the
zeroth-order Hamiltonian. Since our implementation of the
excited state property is based on the construction of Fock

matrices from modified density matrices, the computational
scaling and handling of two-electron integrals parallel that of
other modules in the program such as the self-consistent field
optimization of the reference state.

The electron correlation effects are in most cases sub-
stantial in the evaluation of the quadratic response function,
e.g., the correlation effects on the excited-to-ground state
dipole moment difference ���=�e−�g� for the 1 1�+ and
1 1� states amount, respectively, to 40% and 105% for CsAg
and 14% and 38% for CsAu. We were not able to draw firm
conclusions about the ability to retrieve the correlation con-
tribution to �� from density functional theory methods. The
results indicate that density functional theory in combination
with the Coulomb attenuated functional of Yanai et al.38 per-
forms well for calculations of �� in cases where the charge
transfer between the two atoms is less than 0.25e but per-
forms poorly when the charge transfer exceeds 0.50e.
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The nonlinear polarization and two-photon absorption parameters have been determined for
dibromo- and di-iodobenzene in their meta- and ortho-conformations and with relativistic effects
accounted for to a varying degree. By exclusion of small component integrals in the calculations of
the first-order hyperpolarizability, results within 1% of fully relativistic four-component
Hartree-Fock values are obtained at a cost of 8.7 times the corresponding nonrelativistic
calculations. It is shown that the nonlinear absorption in bromobenzene �and even more so in
iodobenzene� is broad banded due to spin-orbit interactions among the excited states, and
nonrelativistic and scalar relativistic calculations are not to be used in this case. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2204604�

I. INTRODUCTION

The design of molecular materials with large and spe-
cific nonlinear optical responses has attracted a wide-spread
experimental as well as theoretical interest, see for instance
the book edited by Papadopoulos et al.1 for a recent account.
Among the first principles approaches in quantum chemistry
a formulation of time-dependent perturbation theory known
as response theory has proven to be a most successful plat-
form for the design of efficient computational schemes, and
the work of Olsen and Jørgensen2 from 1985 is considered
by many to be a starting point in this development. A more
modern formulation of response theory that incorporates
variational and nonvariational electronic structure methods
on the same footing is provided by Christiansen et al.,3 and
recently the theory has also been extended by Norman et al.4

to include near-resonant and resonant regions of the spectra.
The general response theory is formulated in such a way

that explicit formulas for the response functions that collect
orders in the responses to the perturbing fields can be de-
rived. As far as nonlinear response functions are concerned
there exist today implementations for virtually all standard
nonrelativistic electronic structure methods,5–12 and these are
typically also supplemented with the possibility to incorpo-
rate scalar relativistic effects by use of the second-order,
spin-free, Douglas-Kroll-Hess transformation13,14 or relativ-
istic effective-core potentials.15 Full account for relativistic
effects, on the other hand, requires a four-component ap-
proach, and the development of analytic nonlinear response
functions corresponding to the nonrelativistic ones given
above is yet largely unexplored; apart from the quadratic
response function that has been presented in the four-
component Hartree-Fock approximation.16,17

The use of fully relativistic response functions in real
applications is undisputed and from the technological side it

is largely driven by the design of organometallic molecular
compounds with specific nonlinear optical properties, see for
instance the review on optical power limiting by Norman and
Ågren.18 There are a few factors, however, that slow down
both the development and the application of response func-
tions at the fully relativistic level of theory, among which the
most noteworthy are as follows: �i� the coupling of spin and
orbital degrees of freedoms enforces use of double groups in
the classification of the one-electron wave functions, �ii� the
inclusion of magnetic interactions in the zeroth-order Hamil-
tonian implies use of complex wave functions, and �iii� the
inclusion of small components in the spinors inflicts the use
of large basis sets in the calculations. One way to address the
third issue is to use a two-component formalism such as the
zeroth-order regular approximation.19,20 In the present work
we will compare this approach with the integral approxima-
tions made during the calculation of the four-component
wave function and its responses.

It is well known that the small component electron den-
sity is strongly localized to the regions of nuclei and that it
has only minor effects on the valence electron density. On
the other hand, it is also well known that third-order proper-
ties such as the electric dipole hyperpolarizability and the
closely related two-photon absorption transition matrix ele-
ment are very sensitive to the diffuse tail in the molecular
electron density and therefore suffer a strong dependence on
basically all wave function parameters in practical calcula-
tions. It is the purpose of the present work to investigate to
what extent the quality of hyperpolarizability and two-
photon absorption calculations at the four-component level
of theory can be maintained as integral and spinor approxi-
mations are introduced. The investigation is carried out at the
electron uncorrelated Hartree-Fock level, but we expect that
the conclusions drawn here with respect to small component
integrals and positronic polarizations are generally valid for
the two molecular properties under study. This work will
serve as benchmark for future calculations of two-photona�Electronic mail: panor@ifm.liu.se
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induced optical properties in applications where valence
electron spin-orbit interactions need to be included. Of im-
mediate concern for us will be the molecular property param-
eters in the Jablonski diagram that govern optical power lim-
iting in organometallic chromophores,18 and the mere size of
the systems of interest is such that the approximations and
reduced computational costs considered in the present work
do become important.

We will base our study on disubstituted bromo- and io-
dobenzene in the meta- and ortho-conformations, and will
thus be concerned with internal heavy atom effects on con-
jugated �-electron systems.

II. METHODOLOGY

The present work is concerned with the calculation of
first-order electric dipole hyperpolarizability ���� as well as
transition matrix element S��

0→f and cross section �0→n for
two-photon absorption at the four-component Hartree-Fock
level of theory, and to investigate their sensitivity towards
various approximations. We will compare this sensitivity
against that found for first- and second-order properties, in
this case electric dipole moment ��, electric dipole polariz-
ability ���, and transition matrix elements M�

0→f and oscil-
lator strengths f0→f for one-photon absorptions. The indi-
vidual transition matrix elements for one- and two-photon
absorptions will not be tabulated so the comparison is, in this
case, made for the cross sections. The connections between
the ground state molecular properties and the linear,
���̂� ; �̂����, and nonlinear, ���̂� ; �̂� , �̂����1,�2

, response
functions are as follows:

�� = �0��̂��0� , �1�

����− �;�� = − ���̂�;�̂����

= �−1 � P−	,1 �
n
0

�0����n��n����0�
�n − �

, �2�

�����− �	;�1,�2� = ���̂�;�̂�,�̂����1,�2

= �−2 � P−	,1,2

� �
n,k
0

�0��̂��n��n��̂��k��k��̂��0�
��n − �	���k − �2�

,

�3�

where �n is the transition frequency of excited state �n�, and
�̂� is the electric dipole operator along the molecular axis �.
For convenience we have also included the expressions for
the response functions in the spectral representation, but it is
clear that, when orbital variations are included in the wave
function model, the explicit sum-over-states expressions will
turn into nondiagonal matrix equations instead, see Ref. 2 for
general details and Refs. 16, 17, and 21 for explicit details in
the four-component Hartree-Fock approximation.

For the one- and two-photon absorption matrix elements
we have

M�
0→f = �0��̂��f� , �4�

S��
0→f��� = �−2�

k
	 �0��̂��k��k��̂��f�

�k − �
+

�0��̂��k��k��̂��f�
�k − �


 ,

�5�

and we see that these absorption matrix elements are directly
connected to the first-order residues of the linear � Eq. �2��
and first-order nonlinear �Eq. �3�� response functions, respec-
tively. The reader may consult Ref. 17 for the corresponding
and explicit matrix formula for two-photon absorption in the
four-component Hartree-Fock approximation.

III. COMPUTATIONAL DETAILS

All calculations in the present work were performed for
molecular structures that were optimized with the Kohn-
Sham density functional theory method using the hybrid
B3LYP exchange correlation functional;22 for H, C, and Br
the 6–31G* basis set was used23,24 and for iodine the Stut-
tgart effective-core potential �ECP� was used.25 Structure op-
timizations were performed in the C2v point group with the
GAUSSIAN program.26 The molecules are placed, with the z
axis as principle axis, in the yz plane with the heavy atoms
along the negative z direction.

The all-electron property calculations were performed
with a locally modified version of the DIRAC program27 that
includes a two-photon absorption module,17 and those where
an ECP was used for Br or I were performed with the DAL-

TON program.28 The property calculations were performed at
the uncorrelated Hartree-Fock level of theory with fully un-
contracted basis sets that are based on the exponents from
Sadlej’s polarization basis set29 with further addition of po-
larization and diffuse functions. The basis sets were aug-
mented using the formula

�N+j = 	 �N

�N−1

 j

�N, j � �1,Naug� , �6�

where Naug is the number of augmentation functions added,
and �N and �N−1 refer to the two most diffuse exponents in
the original basis sets. The only exception to this rule is the
f shell of the iodine basis set, which was not augmented. To
the basis set of bromine we added four f functions based on
the four most diffuse p exponents in the original basis set.
The sizes of the singly augmented large component basis sets
used in the property calculations were �7s5p�, �11s7p5d�,
�16s13p10d4f�, and �20s16p13d4f� for H, C, Br, and I, re-
spectively, and the small component basis functions were
generated from those of the large component with the use of
the restricted kinetic-balance condition.

For the calculations based on the zeroth-order regular
approximation �ZORA� we employed the unscaled four-
component ZORA as implemented in the DIRAC program.30

This formulation is equivalent to the two-component ZORA
described in Refs. 19 and 20, but since it is implemented in
a four-component framework we will not compare the com-
putational cost in this case.
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IV. RESULTS

It is our intention in the present work to discuss the
evaluation of quadratic response functions at the four-
component Hartree-Fock level of theory, and we use disub-
stituted halobenzenes to exemplify some approximations that
can be made in order to reduce the computational cost. This
study will be concerned with the valence electron polariza-
tion and absorption as induced by an electric field in the
electric dipole approximation. We will label four-component
calculations as models A1-A4 and nonrelativistic calcula-
tions as models B1 and B2. The A1 model includes all large
and small component integrals as well as full polarization of
the electronic states due to the positronic states; the A2
model neglects interactions between small component densi-
ties, i.e., it ignores �SS �SS� integrals; the A3 model, in addi-
tion to the approximations made in A2, ignores the redress-
ing of the electronic states, i.e., ignores �e-p� rotations in the
propagator; the A4 model includes only scalar relativistic
effects. The Z model is the unscaled four-component ZORA
approach, including both scalar and nonscalar relativistic ef-
fects. The B1 model refers to regular all-electron nonrelativ-

istic Hartree-Fock calculations; the B2 model includes the
use of the effective-core potential Hamiltonian.

A. Basis set considerations

The basis set requirement for the large components of
the spinors in a four-component calculation parallels that of
the corresponding nonrelativistic calculation. In the evalua-
tion of the first-order hyperpolarizability tensor and the two-
photon absorption matrix elements we thus need to include
polarization as well as diffuse functions in the one-particle
basis set. In Table I we report a basis set investigation for the
first-second-, and third-order electric dipole properties at the
nonrelativistic Hartree-Fock level of theory. Our uncon-
tracted basis set �SAD� is based on the exponents from Sa-
dlej’s polarization basis set which is optimized with respect
to calculations of the molecular polarizability. Among the
elements of interest, the original SAD basis set lacks polar-
ization functions only for bromine �polarization of the 3d
shell�, so for other elements we will only add diffuse func-
tions to the basis set. From Table I it is clear that the values
of the linear polarizabilities are stable towards the addition of
polarization and diffuse basis functions, but the first-order
hyperpolarizability results are not. We conclude that the po-
larization functions on bromine are important and that, in
terms of diffuse functions, single augmentation is adequate.
Subsequent results reported in this work will be based on
those basis sets.

B. Polarizabilities

The molecular in-plane components dominate the linear
polarizability tensor due to the mobility of the � electrons in
the yz plane, see Tables II and III. The out-of-plane compo-
nent �xx differs by 1%-2% for the meta- and ortho-
conformations of bromo- and iodobenzene. The in-plane
components ��yy and �zz�, on the other hand, differ substan-
tially due to the anisotropy induced by the electron rich at-

TABLE I. Optical properties for disubstituted halobenzenes at the nonrela-
tivistic Hartree-Fock level of theory. All quantities are given in atomic units.

Basis set �z �xx �yy �zz �zxx �zyy �zzz

meta-dibromobenzene
SAD 0.7549 69.80 150.4 115.7 3.57 −47.95 27.16

aug-SAD 0.7551 69.80 150.4 115.7 2.63 −48.30 25.96
daug-SAD 0.7550 69.80 150.4 115.7 2.58 −48.48 25.97

aug-p-SAD 0.7482 69.78 150.5 115.8 3.57 −48.97 27.85
daug-p-SAD 0.7480 69.79 150.5 115.8 3.86 −49.05 28.04

meta-di-iodobenzene
SAD 0.7537 91.21 196.1 140.5 56.75 12.72 139.4

aug-SAD 0.7537 91.23 196.1 140.5 56.17 12.08 140.0
daug-SAD 0.7536 91.23 196.1 140.5 56.14 12.09 140.2

TABLE II. Optical properties for disubstituted bromobenzene at the Hartree-Fock level of theory. Different
models are considered for the inclusion of relativistic effects. All quantities are given in atomic units.

Model �z �xx �yy �zz �zxx �zyy �zzz

meta-dibromobenzene
A1 0.7218 69.81 150.8 115.9 4.55 −45.49 31.65
A2 0.7218 69.81 150.8 115.9 4.55 −45.50 31.64
A3 0.7218 69.81 150.8 115.9 4.54 −45.54 31.61
A4 0.7241 69.79 150.7 115.9 4.25 −45.48 30.88
Z 0.7223 69.81 150.8 115.9 4.54 −45.60 31.57

B1 0.7482 69.78 150.5 115.8 3.57 −48.97 27.85
B2 0.7291 69.90 150.8 116.0 4.91 −47.30 31.27

ortho-dibromobenzene
A1 1.0709 69.13 121.5 138.9 8.34 −6.65 −29.73
A2 1.0709 69.13 121.5 138.9 8.30 −6.61 −29.79
A3 1.0709 69.13 121.5 138.9 8.30 −6.61 −29.79
A4 1.0748 69.11 121.5 138.8 7.88 −6.94 −30.38
Z 1.0716 69.13 121.5 138.9 8.28 −6.75 −29.86

B1 1.1147 69.10 121.4 138.8 6.72 −9.99 −35.62
B2 1.0826 69.21 121.6 138.9 8.45 −7.56 −31.41

214311-3 Two-photon absorption in bromo- and iodobenzene J. Chem. Phys. 124, 214311 �2006�
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oms; for the ortho-conformations, with the heavy atoms
closer to the principle axis, the �zz component is the domi-
nating tensor element whereas the �yy component dominates
for the meta-conformations when the heavy atoms are more
separated. The average in-plane polarizabilities �� = ��yy

+�zz� /2 are only 2%-4% larger for the meta-compounds.
Effects of relativity on the static polarizabilities are vir-

tually absent for bromo- as well as iodobenzene. Since the
polarizability is closely related to the oscillator strength dis-
tribution according to

����0;0� = 3�
n
0

fn

�n
2 ; fn =

2�n

3
��0����n��2, �7�

there is a reason to believe that the linear absorption spectra
of the compounds in the present study are equally unaffected
by relativity. The oscillator strengths for the lowest valence
excited states of bromo- and iodobenzene are presented in
Tables IV and V. The states that contribute most significantly
to the polarizabilities are relatively high in energy and not
resolved in the relativistic calculation due to the large num-
ber of low-lying triplet states. However, we note that for
iodobenzene there are several triplet states in the molecular
“band gap” region that acquire significant oscillator
strengths. By molecular band gap region we refer to energies
smaller than the lowest spin- and dipole-allowed transition
energies. However, it is clear that this is a case of j-j cou-
pling, and a nonrelativistic notation of states becomes less
meaningful, and, throughout, we therefore choose to label
the three components of given triplet states according to the
boson irreducible representation spanned by the respective
four-component wave functions �e.g., the three components
of a 3A1 state span irreducible representations �irreps� B1, B2,
and A2�. The triplet states in the band gap of ortho-di-
iodobenzene with largest oscillator strengths are the A1 state
at 4.34 eV �f =0.51�10−2� and the B2 state at 4.58 eV �f
=0.65�10−2�, which correspond to contributions of 0.60 and
0.69 a.u. to �zz and �yy, respectively. In Table V we have

chosen to include only states with significant two-photon ab-
sorption cross section, and neither of these two states are
therefore reported in the table. We note, however, that these
single contributions to the respective tensor components ex-
ceed the overall relativistic effects which amount to 0.2 and

TABLE III. Optical properties for disubstituted iodobenzene at the Hartree-Fock level of theory. Different
models are considered for the inclusion of relativistic effects. All quantities are given in atomic units.

Model �z �xx �yy �zz �zxx �zyy �zzz

meta-di-iodobenzene
A1 0.6793 90.91 197.2 140.5 61.30 31.14 157.2
A2 0.6793 90.91 197.2 140.5 61.26 31.21 157.2
A3 0.6793 90.91 197.2 140.5 61.26 31.21 157.2
A4 0.6963 90.73 196.3 140.2 58.41 29.21 149.9
Z 0.6800 90.92 197.2 140.5 61.26 30.86 157.1

B1 0.7537 91.23 196.1 140.5 56.17 12.08 140.0
B2 0.7074 91.14 196.5 140.5 59.36 22.27 150.5

ortho-di-iodobenzene
A1 0.9519 88.93 154.3 170.4 86.23 72.81 151.3
A2 0.9519 88.93 154.3 170.4 86.26 72.80 151.2
A3 0.9519 88.93 154.3 170.4 86.26 72.80 151.2
A4 0.9804 88.77 153.8 169.9 82.07 69.15 143.2
Z 0.9531 88.94 154.3 170.4 86.24 72.52 150.9

B1 1.0740 89.19 154.3 170.2 78.37 53.66 123.4
B2 0.9973 89.13 154.2 170.1 82.94 65.23 139.0

TABLE IV. Excitation energies 
E �eV�, linear oscillator strengths f , and
two-photon absorption cross sections �TPA �a.u.� for ortho-dibromobenzene
using the nonrelativistic B1 method and the four-component relativistic A2
method.

B1 A2

State 
E f �TPA State 
E f �TPA

3A1 4.55 0 0 1B1 4.55 0.0000 0.0004
1B2 4.55 0.0000 0.0000
1A2 4.55 0 0.0022

3B2 4.57 0 0 1A1 4.57 0.0000 0.0001
2B1 4.57 0.0000 0.0003
2A2 4.57 0 0.0001

3A1 4.93 0 0 3B1 4.93 0.0000 0.0001
2B2 4.93 0.0000 0.0002
3A2 4.93 0 0.0001

3B1 5.15 0 0 2A1 5.10 0.0001 0.0611
3B2 5.11 0.0000 0.0678
4A2 5.10 0 0.0032

3A2 5.61 0 0 3A1 5.55 0.0000 0.2331
4B1 5.53 0.0000 0.0510
4B2 5.55 0.0001 0.0103

1A1 5.64 0.0001 30.12 4A1 5.64 0.0003 29.82

1B2 5.66 0.0218 2.700 5B2 5.66 0.0214 2.763

3B2 5.81 0 0 5B1 5.72 0.0001 5.676
5A2 5.79 0.0000 0.1969
5A1 5.83 0.0000 0.0007

1B1 5.88 0.0000 11.70 6B1 5.90 0.0001 7.231
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0.0 a.u. for �zz and �yy, respectively. From the results in
Table III it is also clear that there does not exist a cancella-
tion of scalar relativistic and spin-orbit effects for the polar-
izability, and given the spin-forbidden absorption reported
above, the reason for the lack of relativistic effects on the
polarizability of iodobenzene is less than clear. The ZORA
approximation gives polarizabilities in almost exact agree-
ment with the full four-component results, both for the
bromo- and iodobenzenes.

With respect to the linear polarizability we also note that
calculations performed with the effective-core potential
Hamiltonian are in excellent agreement with the correspond-
ing all-electron results. This shows that the core polarization
is negligible in the present case.

C. Hyperpolarizabilities

While relativistic effects on the polarizabilities of the
halobenzenes are negligible this is not the case for the hy-
perpolarizabilities. Due to symmetry, the only unique and
nonzero tensor elements are �z�� ��� �x ,y ,z
� and the ori-
entational averaged hyperpolarizability is defined as

�̄ =
3

5
��zzz + �zyy + �zxx� . �8�

It is reasonable that the first-order hyperpolarizability de-
creases from the ortho- to the meta-conformation in order to

finally vanish in the para-conformation. The values of �̄ for
ortho- and meta-bromobenzene are −16.82 and −5.57 a.u.,
respectively, and those for ortho- and meta-iodobenzene are
186.2 and 149.8 a.u., respectively. On a wave function level
this decrease is associated with a reduced ground-to-excited

state transition moment along the z axis. In this sense,
the most important transitions among the lower valence
states are the �nA1� states at 6.99 eV �f =0.848�, 6.99 eV
�f =0.442�, 6.80 eV �f =0.838�, and 6.85 eV �f =0.279� for
o-C6H4Br2, m-C6H4Br2, o-C6H4I2, and m-C6H4I2, respec-
tively. These results are obtained at the nonrelativistic level
of theory and the states fall outside the energy region that is
reported in Tables IV and V.

One reason for us to choose these systems is an interest
to see how relativistic effects differ between meta- and
ortho-conformations. In the latter conformation we would
expect two-center relativistic effects to be larger due to spa-
tial closeness of the two heavy atoms.

For m-bromobenzene the relativistic effects on the �zzz,
�zyy, and �zxx components are 14%, 7%, and 27%, respec-
tively, and for o-bromobenzene the corresponding values are
17%, 33%, and 24%, respectively. The triplet states in the
band gap of o-bromobenzene with largest oscillator strengths
are the A1 state at 5.10 eV �f =0.11�10−3� and the B2 state
at 5.55 eV �f =0.10�10−3�. These values of oscillator
strengths are some 50 times smaller compared to the most
intensive spin-forbidden transitions in o-iodobenzene that
were discussed above, and spin-orbit coupling is therefore
not likely to be main responsible for the large relativistic
effects on the hyperpolarizabilities of the bromobenzenes. In
Table III we also include results obtained with model A4
which is based on the spin-free Hamiltonian and which
therefore include only scalar relativistic effects. For the hy-
perpolarizability of the bromobenzenes, the discrepancies in
the scalar relativistic model as compared to the fully relativ-
istic model A1 amount to no more than 2.5% for the domi-

TABLE V. Excitation energies 
E �eV�, linear oscillator strengths f , and two-photon absorption cross sections
�TPA �a.u.� for ortho-diiodobenzene using the nonrelativistic B1 method and the four-component relativistic A2
method. States with �TPA�0.1 a.u. are left out in the presentation.

Nonrelativistic �B1 method� Relativistic �A2 method�

State 
E f �TPA State 
E f �TPA

1A1 3.68 0.0000 0.2162
1B2 3.77 0.0000 0.3138
1B1 3.82 0.0000 0.3795
2A1 3.92 0.0001 0.5631
2B1 4.02 0.0000 0.5888
2A2 4.03 0 0.2078
3A2 4.24 0 0.2020
4B1 4.45 0.0000 2.586
4A2 4.50 0 0.6356
4A1 4.53 0.0000 0.2947
5B1 4.57 0.0000 0.1060

1B1 4.68 0.0005 5.304 6B1 4.65 0.0000 3.001
1A2 5.00 0 5.234 6A2 4.77 0 2.835
1B2 5.09 0.0062 1.772 5B2 4.86 0.0016 1.089

5A1 4.89 0.0000 3.471
8B1 5.30 0.0000 0.4545
8A2 5.31 0 0.2294
7B2 5.52 0.0003 0.3875

1B2 5.59 0.0533 2.726 8B2 5.60 0.0505 2.963
1A1 5.59 0.0000 10.23 6A1 5.62 0.0004 37.46
1A1 5.61 0.0013 44.38 7A1 5.71 0.0010 14.90
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nant tensor elements. Accuracies within 1% are obtained
only by inclusion of spin-orbit coupling �models A2, A3, and
Z�.

For m-iodobenzene the relativistic effects on the �zzz,
�zyy, and �zxx components are 12%, 258%, and 9%, respec-
tively, and for o-iodobenzene the corresponding values are
23%, 36%, and 10%, respectively. So, apart from �zyy of
m-iodobenzene the relativistic effects are of similar magni-
tude for iodobenzenes as for bromobenzenes. However, the
nature of the effects are different as can be understood from
the more intensive spin-forbidden transitions. The scalar
relativistic model �model A4� is in error by 5%–7% when
compared to the fully relativistic values. Addition of spin-
orbit coupling brings the accuracy well within 1% regardless
of whether or not we include small component integrals or
positronic polarization of the electron states �models A2 and
A3, respectively�. Also the approximate ZORA method gives
results well within 1% of the A1 values, supporting the con-
clusion that, for the hyperpolarizabilities of the molecules
under study, the scalar and nonscalar relativistic effects are
of comparable importance.

On the calculation of hyperpolarizablities of haloben-
zenes, we finally note that the effective-core potential results
�model B2� are in all cases superior to the nonrelativistic
counterparts. Such a consistent performance for a sensitive
high-order molecular property such as the hyperpolarizabil-
ity is noteworthy and has been recognized before.31 In these
calculations there are no explicit internal magnetic interac-
tions incorporated, but the ECPs are parameterized against
accurate relativistic atomic densities.

D. Two-photon absorption

We have demonstrated above that the ground state non-
linear polarization can be determined accurately with neglect
made of small component integrals and electron-positron or-
bital rotations. With bromine as the heavy atom one can even
reduce the relativistic treatment to only include scalar rela-
tivistic effects and still maintain high accuracy in the calcu-
lation. For two-photon absorption it was demonstrated by
Henriksson et al.17 that a scalar relativistic treatment is inap-
propriate for the calculation of the spectra of the noble gases,
and in the present work we extend this investigation to in-
clude �-conjugated systems for which the interest lies also in
technological applications. The two-photon cross section for
the absorption of linearly or circularly polarized light by a
randomly oriented sample is given by32

�TPA =
1

15�
�,�
�FS��

0→f�� f

2
�	S��

0→f�� f

2
�
*

+ GS��
0→f�� f

2
�

�	S��
0→f�� f

2
�
*

+ HS��
0→f�� f

2
�	S��

0→f�� f

2
�
*� , �9�

where F, G, and H are factors that depend on the polarization
of the incident light and the two-photon matrix elements S
are those defined in Eq. �5�. We will restrict our report to
include only absorption for circularly polarized light in
which case F=−1 and G=H=3/2.

In Table IV we present the two-photon absorption cross
sections for the o-dibromobenzenes. We note a spin-allowed
two-photon transition to a state of A1 symmetry at 5.64 eV
with a nonrelativistic cross section of 30.12 a.u. The corre-
sponding relativistic calculation with the A2 model gives an
energy of 5.64 eV but a cross section of 29.82 a.u. However,
we stress that the relativistic effect on the integrated cross
sections is even less because in the relativistic calculation
there are also A1 states at energies 5.10 and 5.55 eV that
acquire cross sections of 0.06 and 0.23 a.u. The integrated
cross section in the relativistic case is therefore 30.11 a.u.,
which is virtually identical to that obtained in the nonrelativ-
istic case.

An even more striking example of this smearing out of
the two-photon absorption intensity is given among the B1

states in o-dibromobenzene. The two states at energies 5.71
and 5.90 eV in the relativistic calculation interact strongly
due to spin-orbit interaction �the corresponding nonrelativis-
tic singlet state is at 5.88 eV� and the intensity is almost
spread equal on the two states. In this case there is a relativ-
istic enhancement of the integrated cross section which
amounts to 5.68 and 7.23 a.u. for the two individual states to
be compared with the singlet absorption cross section in the
nonrelativistic case of 11.70 a.u.

In Table V the two-photon absorption cross sections for
the o-di-iodobenzenes are presented. At the nonrelativistic
level of theory the two singlet states, lowest in energy and of
A1 symmetry, are positioned at 5.59 and 5.61 eV and then
there is a gap of 1.2 eV to the third singlet state in this
symmetry. The integrated cross section of these two singlet
states amounts to 54.6 a.u. In the relativistic calculation there
are seven states of A1 symmetry in the energy interval
3.68–5.71 eV but only a gap of 0.3 eV to the eighth state in
this symmetry, so a division is not as clear as in the nonrel-
ativistic case. Nevertheless, if we sum up the cross sections
for the first seven states of A1 symmetry we obtain an inte-
grated cross section of 57.0 a.u., which again demonstrates
that the integrated cross sections may be fairly reasonable in
a nonrelativistic treatment but that the absorption is far too
narrow banded as compared to a correct relativistic treat-
ment.

In contrast to linear absorption spectroscopy, two-photon
absorption spectroscopy is dependent on the polarization of
the electric field, which thus provides a further possibility to
characterize the two-photon active excited states. For irre-
ducible representations B1, B2, and A2 in the C2v point group,
only the off-diagonal elements of the two-photon absorption
amplitude tensor S�� �Eq. �5�� are nonzero. This will inflict
that the ratio of the two-photon absorption cross section for
circularly and linearly polarized light is equal to 1.5 for all
states in these symmetries �the absorption for circularly po-
larized light is stronger�. On the other hand the correspond-
ing ratio R for absorption to states of A1 symmetry is not
constant, and while R=1.28 for the two A1 states of
o-di-iodobenzenes at 5.62 and 5.71 eV we find that R=1.43
for the state at 4.89 eV. This polarization dependence should
make it possible to identify the triplet states for which we
predict a strong spin-forbidden two-photon absorption.
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V. SUMMARY AND DISCUSSION

The perhaps single-most important disadvantage of four-
component methods in quantum chemistry is the high com-
putational cost due to the description of the small component
in the spinors. Other issues, such as the inclusion of mag-
netic fields and magnetic field interactions, are, on the other
hand, much simpler in a fully relativistic framework. In this
paper we are concerned with the evaluation of the quadratic
response function at the four-component Hartree-Fock level
of theory, and we have demonstrated that, with neglect of
small component �SS �SS� integrals, results for the hyperpo-
larizabilities of halobenzenes are accurate to within 1%.
From Table VI we note that the overall wall time, as mea-
sured in units of the wall time for the corresponding nonrel-
ativistic Hartree-Fock calculation, is reduced from 25.9 with
inclusion of �SS �SS� integrals to 8.7 when they are left out.
We expect these observations to be generally valid for the
calculation of hyperpolarizabilities of organic based heavy
atom compounds, and we thus recommend the use of this
approximation on more general terms.

We have demonstrated that for calculations of nonlinear
electric properties in the dipole approximation the electron-
positron orbital rotations can be left out in the calculation of
the propagator, but this amounts only to memory savings.
The results calculated using the zeroth-order regular approxi-
mation are highly accurate �within 1% of fully relativistic
results�, and since, in a two-component implementation, the
method is expected to have a computational scaling in be-
tween a nonrelativistic treatment and a relativistic treatment
without �SS �SS� integrals, it is a cost effective yet accurate
approach to treat nonscalar relativistic effects for the systems
and properties studied here.

We have also shown that the scalar relativistic correc-
tions are accurate to within 2.5% for the calculations of the
hyperpolarizabilities of bromobenzenes, but that discrepan-
cies of 5%–7% are obtained when spin-orbit interactions are
left out in iodobenzenes. From the quadratic response func-
tion we can determine two-photon absorption matrix ele-
ments �and thereby also cross sections�. For the bromine
compounds, and even more so for the iodine compounds,
nonrelativistic as well as scalar relativistic calculations of the
two-photon absorption spectra are qualitatively incorrect.
The integrated two-photon absorption cross sections may be
comparable to the fully relativistic ones, but spin-orbit inter-
actions cause the absorption to be broad banded, i.e., the
absorption intensity is most effectively spread out over elec-

tronically excited states of nonrelativistic triplet spin symme-
try in a broad energy range. In any application that involve
coherent two-photon absorption this will be important, and
nonscalar relativistic effects should be considered for com-
pounds that include third �and lower� row elements. We note
that this result is particular to the nonlinear absorption pro-
cess and is not significant in the linear absorption spectra.

The current work also presents results obtained with the
effective-core Hamiltonian without explicit inclusion of
magnetic interactions. It is shown that even a sensitive prop-
erty such as the hyperpolarizability is quite well described by
this method, and considering the simplifications made, the
agreement with all-electron four-component results is note-
worthy. For this reason, we will pursue a development of
effective-core potentials in the four-component approach in
order to fully account for the valence spin-orbit effects at a
computational cost that enables applications to organometal-
lic systems of technological interest.
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Multiphysics modeling, combining quantum mechanical and classical wave mechanical theories, of clamping
levels has been performed for a platinum(II) organic compound in a sol-gel glass matrix. A clamping level
of 2.5 µJ is found for a pulse duration of 10 ns. The excited-state absorption in the triplet manifold is shown
to be crucial for clamping to occur.

Ι. Introduction

Laser light propagation through an optically active medium
can favorably be analyzed by means of multiphysics modeling
that involves an interplay of quantum mechanical and classical
electromagnetic theories. In the present work we exploit this
notion and address optical power limiting (OPL), induced by
randomly oriented molecular materials, by combining first
principles quantum mechanical calculations of molecular prop-
erties with time-domain solutions of the Maxwell equations.
We demonstrate our modeling approach onπ-conjugated
platinum(II) acetylide that in recent experimental work has been
shown to function as a broadband limiter.1 The power limiting
capability is explained in terms of a Jablonski diagram,2 several
key parameters of which previously have been determined for
related platinum(II) organic compounds by use of first principle
methods3,4 and in a more general context by experiment.5-7 In
the present work we significantly widen the scope for the
theoretical simulations of OPL by also including quantum
mechanical simulations of excited-state properties both in the
singlet and in the triplet manifold of states and by combining
the molecular property calculations with a light propagation
model8,9 to retrieve estimates of the final property of interest,
namely, the clamping level of the material. If successful, such
a development is expected to have a large impact on the
possibility to design molecular materials for OPL applications
by theoretical simulations. The basic principle is that knowledge
of the intrinsic molecular properties must be combined with
classical pulse propagation to address the strong dependence
of clamping levels on the laser pulse characteristics, such as
intensity, shape, and duration time.

II. Methodology

We demonstrate the use of our simulation approach by
studying the clamping levels for platinum(II) acetylide with
thiophene units in the ligands under different lasing conditions.
We consider the linear and nonlinear interactions between an

ensemble of randomly oriented chromophores with number
density N and an optical electric field. The field is phase
coherent in thexy-plane (i.e., a plane wave) and propagates in
the z-direction through a glass medium doped with chro-
mophores and with thicknessd according to

wherek ) 2πn/λ is the wavenumber (n is the refractive index)
of the laser field andE is the amplitude function that corresponds
to an intensityI ) cε0|E|2/2. The incident laser pulse is, at time
t ) 0, assumed to have a Gaussian profile characterized by its
peak power and a given full width at half-maximum (fwhm) in
the time domain, and with the amplitude functionE(r ,t), at time
t > 0 during the propagation through the medium, determined
from the paraxial wave equation10

whereP(r ,t) ) P (r ,t) ei(kz+ωt) + c.c. is the polarization of the
medium.

The polarization of the medium has two contributions, namely
the polarizations of the hostP h and the chromophorePc

The host material can for instance be a solvent, sol-gel glass,
or polymer matrix, which should be nonabsorbing at the
frequency of interest. In addition, the polarization of the host
is assumed to be linear so that it can be written as

where øh
(1) is the electric linear susceptibility. The host

susceptibility relates to the corresponding refractive index
according toøh

(1) ) n2 - 1.
The polarization of the chromophore governs the optical

power limiting capabilities of the material. This polarization
will obviously have nonlinear components, and macroscopic* Address correspondence to this author. E-mail: panor@ifm.liu.se.

E(r ,t) ) E(r ,t) ei(kz+ωt) + c.c. (1)

( ∂

∂z
+ 1

c
∂

∂t
- i

2k
∆⊥)E(r ,t) ) ik

ε0
P (r ,t) (2)

P (r ,t) ) Ph(r ,t) + Pc(r ,t) (3)

Ph(r ,t) ) ε0øh
(1)(ω) E(r ,t) (4)
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excited-state populations will appear during the action of the
laser pulse. It is the aim of the present work to interrelate the
power limiting performance and the electronic structure of the
ground and excited states of the chromophore. We determine
the polarization of the chromophore by use of the quantum
mechanical density matrix formalism and the Liouville equa-
tion11

where the Hamiltonian matrix is a sum of the unperturbed
molecular Hamiltonian (diagonal matrix with excitation energies
on the diagonal) and a perturbation due to the external electric
field. In the electric-dipole approximation (which applies to a
given chromophore at positionr0), the perturbation is equal to

where we have introduced the electric dipole moment operator
µ̂R along the molecular axisR. Given the solution to eq 5, the
polarization as due to the chromophore at pointr0 is

whereN is the number density of chromophores in the medium.
Our calculations account for an averaging of the molecular
orientations with respect to the external electric field.

The matrix elements of the molecular Hamiltonian and the
dipole moment operator as well as radiative absorption and
relaxation parameters in the Liouville equation [eq 5] are
determined by the use of first principles quantum chemical
calculations, whereas the nonradiative relaxation parameters are
set to values that are generally representative for large-sized
chromophores. A detailed presentation of our methodology is
found in ref 8, with underlying theory given in refs 9 and 12.

III. Computational Details

The molecular structure of the platinum(II) chromophore
(ATP) is shown in Figure 1. The structure was optimized at
the density functional theory (DFT) level by using the B3LYP
hybrid exchange-correlation functional13 with effective-core
potentials for platinum14 and phosphorus15 and all-electron
6-31G16 basis sets for the light elements. Apart from the
exchange-correlation functional, an identical parametrization of
the Kohn-Sham determinant was chosen for the property
calculations where the time-dependent DFT (TD-DFT) approach
was employed. All property calculations were performed at the
ground-state optimized structure (vertical transitions), employing
the Coulomb-attenuated B3LYP (CAM-B3LYP) exchange-
correlation functional.17 The geometry optimization has been
performed with the Gaussian program,18 whereas all molecular
property calculations have been carried out with the Dalton
program.19

The optimized structure of ATP belongs to theC2h point
group. The molecular point group of this compound is ambigu-
ous, depending on the orientation of the phosphine and thiophene
groups, see Figure 1. However, this choice is of no importance

to the optical properties of the molecules, so our choice of
conformer for the theoretical work is made with respect to
computational efficiency. With our choice made the molecule
will be strictly planar in the optimized configuration, and due
to inversion symmetry, the diagonal elements of the dipole
moment matrix〈n| µ̂| n〉 vanish. They-axis is chosen to be the
long in-plane molecular axis and thez-axis to be the out-of-
plane axis. As a consequence of this choice, the components of
the electric dipole operatorµ̂x, µ̂y, andµ̂z will span the irreducible
representationsBu, Bu, andAu, respectively.

The pulse propagation simulations are performed assuming
a sample thicknessd ) 1 mm and a chromophore concentration
of 0.02 M. We have used fwhm values of 100 fs and 10 ns for
the laser pulses, and we have considered the photon wavelengths
of 532 and 694 nm. The refractive index of the medium is set
to n ) 1.457 for the two wavelengths under consideration, which
corresponds to a situation where the chromophores are embed-
ded in a sol-gel glass. In our simulations of the transmittance
curves we used a 20µm beam waist radius to estimate the pulse
energy. The relaxation parameters, or inverse lifetimes, of the
excited states are set to 106, 109, and 1012 s-1 for the first excited
triplet state, the first excited singlet state, and other excited
singlet and triplet states, respectively, and the intersystem
crossing rate between the singlet and triplet manifolds is set to
1011 s-1.

IV. Results and Discussion

A. Electronic Structure Calculations. The electronic ground
state of ATP is closed-shell in nature, and therefore of singlet
spin symmetry. The dominating state in the linear absorption
spectrum is the 11Bu state, which to a large extent is described
by a one-electron transition from the highest occupied molecular
orbital of bg symmetry to the lowest unoccupied molecular
orbital of au symmetry. ATP is “one-dimensional” in the sense
that the absorption is induced by an electric field oscillating
along the molecular long in-planey-axissthex- andz-directed
absorption can to a good approximation be ignored. This
observation holds for one-photon as well as two-photon induced
absorption and implies that only states ofAg symmetry are two-
photon active.

As far as the quantum chemical calculations of linear and
nonlinear optical properties are concerned we have chosen to
adopt the density functional theory approach with the CAM-
B3LYP functional. This choice is motivated by the documented
good performance of this functional for response properties
(including the description of charge-transfer transitions).20,21

The vertical electronic transition energy of the 11Bu state is
predicted to be 3.39 eV (366 nm) at this level of theory, and
the corresponding electric dipole transition matrix element is
8.124 au (see Table 1). In atomic units, the oscillator strengths
which is proportional to the absorption strengthsfor the
transition from the ground stateS0 to the excited stateSn is given
by

and for the discussed transistion to the 11Bu state the oscillator
strength is as large as 5.48. This theoretical result is in good
agreement with the experimental spectrum recorded in solution
(tetrahydrofuran).22 The experiment shows a highly intense and
broad absorption between 350 and 420 nm that completely
dominates the near-visible and visible spectrum, and the sample
is accordingly slightly colored. The chromophore used in the

Figure 1. Molecular structure.

∂

∂t
Fmn ) 1
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(HmkFkn - FmkHkn) - γmn(Fmn - F00δn0δm0) (5)
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3
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R
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experiment is that illustrated in Figure 1 but with phosphine
groups that contain butyl rather than hydrogens. At the DFT/
B3LYP level of theory we have determined the red-shift
associated with such a change in the phosphine groups to be
equal to 20 nm and we would thus expect a transition
wavelength of 386 nm at the CAM-B3LYP level. A smaller
red-shift is also associated with the solvent.

The conditions for our laser pulse propagation simulations
will mimic those most commonly used in the experiment with
respect to the laser source, that means a frequency-doubled Nd:
YAG laser operating at 532 nm (2.33 eV). The laser detuning
thus amounts to 31% when compared to the vertical electronic
transition energy of the 11Bu state, but considering the enormous
oscillator strength of theS0 f S1 transition, the large size of
the molecule, and the effects of the environment, there are
several factors that will significantly broaden this absorption.
The experimental linear absorption spectrum22 shows a tail that
stretches to about 550 nm. Due to this broadening, there will
be an important contribution to the OPL characteristics from
nonresonant linear absorption in ATP at the wavelength of the
laser.

Resonant two-photon absorption (TPA) is in general believed
to be of greater importance to the population of the excited states
at longer wavelengths, or short pulse lengths; the reason for
this assumption is that at longer wavelenths (or shorter pulse
lengths) the off-resonant one-photon population of the excited
states is supressed. We further assume that TPA directly
followed by excited state absorption (ESA) is a relatively
unlikely event. We motivate this assumption with the fact that
the TP states are of gerade symmetry and above the 11Bu state
in energy, and since the lifetime of the higher excited states
will be short and nonradiative relaxation will occur, a macro-
scopic population of these states will be effectively prevented.
We have therefore targeted our calculations of excited-to-excited
state transition dipole moments to include only those where the
11Bu state acts as an initial state, see Figure 2. Furthermore,
since the molecular conjugation axis is ofBu symmetry the
excited-to-excited state transitions will be effective only for final
states ofAg symmetry. We have determined the transition matrix
elements from the 11Bu state to the 10 lowest singlet states of

Ag symmetry that covers excitation energies up to 5.41 eV. The
strongest absorption takes place to states 51Ag and 9 1Ag

positioned at 4.76 and 5.18 eV, respectively, and with transition
momentsMy that equal 9.07 and 2.92 au, respectively. These
two states will be occupied in what we denote as a “two-step”
process, which refers to nonresonant ground-to-excited states
absorption followed promptly by excited-excited-state absorption
(both processes having a linear dependence on the intensity of
the laser field). The two individual photons involved in the two
processes have a combined energy of 4.66 eV, and the two-
step absorption to states 51Ag and 91Ag (via 1 1Bu) therefore
contributes strongly to the optical power limiting performance
of the material.

The population of the triplet manifold of states is important
in optical power limiting applications since it causes a situation
where the molecules are spin-trapped for times that are
comparable to, or longer than, the duration of the laser pulse.
It has been shown in experiment that the nonradiative intersys-
tem crossing in platinum(II) organic materials is both fast and
effective,1 and it will be the predominant channel to populate
the triplet manifold in our setup. Fast vibronic relaxation leads
us to consider excited-to-excited-state transitions in the triplet
manifold from the lowest triplet state only, i.e., the 13Bu state

TABLE 1: Vertical Transition State Energies, ∆E (eV),
One-Photon Moments,a Mr (au), and Two-photon Moments,
Srâ (au) that Are of Predominant Importance for Optical
Power Limiting at 532 and 694 nm for Molecular
Compound ATP

ψi ψf ∆E |My| |Syy|
X 1Ag 1 1Bu 3.39 8.124 0

1 1Ag 3.63 0 327.2
2 1Bu 4.02 1.409 0
2 1Ag 4.23 0 155.2
4 1Ag 4.39 0 723.9
3 1Bu 4.62 0.500 0
5 1Ag 4.76 0 3504.4
9 1Ag 5.18 0 1936.4

1 3Bu
b 4 3Ag 1.75 0.058 0

6 3Ag 2.20 0.496 0
7 3Ag 2.28 0.123 0
10 3Ag 2.44 2.154 0

1 1Bu 1 1Ag 0.24 1.426 0
2 1Ag 0.84 0.490 0
3 1Ag 0.86 0.252 0
4 1Ag 1.00 2.026 0
5 1Ag 1.37 9.074 0
9 1Ag 1.79 2.916 0
10 1Ag 2.02 0.430 0

a The corresponding oscillator strength isf ) 2∆E∑R|MR|2/3. b The
transition energy of 13Bu relative to the ground state is 1.93 eV.

Figure 2. Electronic states of predominant importance in the simulation
of the optical power limiting at 532 (2.33 eV) and 694 nm (1.79 eV)
of ATP. The absorption is electric field induced whereas the relaxation
processes and the intersystem crossing (ISC) are nonradiative. The
figure is correctly scaled with respect to photon and transition energies;
the long and short vectors correspond to photon wavelengths of 532
and 694 nm, respectively.
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at 1.93 eV. We include the 10 lowest triplet states ofAg

symmetry and thereby cover excitation energies up to 4.37 eV.
The most important transitions within the triplet manifold are
those from 1 3Bu to states 43Ag and 10 3Ag for photon
wavelengths of 694 and 532 nm, respectively. It is only in the
latter case, however, that the transition momentMy is significant
(2.154 au) and the triplet state ESA should therefore be less
effective at the longer of the two wavelengths. This summarizes
the transitions that will govern the pulse propagation through
the material. We have covered the energy region that includes
nonresonant one-photon absorption and coherent two-photon
absorption from the ground state and resonant excited-to-excited
state one-photon transitions. We argue that the size of transition
moments between a low-lying and a high-lying excited state is
likely to be small due to the large number of nodes in the wave
functions of the latter, which implies that the use of very
extended conjugated systems may be prohibitive for the excited-
to-excited-state absorption in the desired energy region, since
the larger system will have a larger density of valence-excited
states.

B. Pulse Propagation Calculations.The simulations of the
propagation of a laser pulse through the optical power limiting
material are carried out through a time integration of the
combined quantum mechanical and electrodynamical equations
presented in Section II. The populations of the ground and
excited states of the chromophore will vary considerably during
the extent of the pulse and the chromophore state propagation
can therefore not be described by perturbation theory in this
situation.

In a perturbational approach the coherent one- and two-photon
absorption moments can be identified from the first- and second-
order corrections to the expansion coefficients of the reference
state in terms of the eigenstates to the zeroth-order Hamiltonian,
and the corresponding one- and two-photon absorption cross
sections are obtained by taking the absolute square of the
moments. See for instance the book chapter by Norman and
Ruud23 for a detailed description of the perturbational approach
and its application to response theory. In the past, we, and others,
have made frequent use of an identification of the one- and two-
photon matrix elements from the first-order residue of the linear
and quadratic response functions, respectively, and it is also
this approach that is used to determine the transition moments
in Table 1. The one- and two-photon transition moments (MR
andSRâ) are to be squared to obtain the corresponding absorption
cross sections.

In the direct dynamical approach that is used to describe the
pulse propagation in the present work there is not, and cannot
be, a distinct separation between one-photon, two-photon, etc.
absorption due to a mixture of excitations in the ground state
and the excited state manifold. What can be clearly defined,
however, are the terms in the total absorption cross section which
depend linearly and nonlinearly on the intensity of the external
electric field; the first two terms are typically denoted byσ(1)

and σ(2). It is in the limit of short laser pulses that we can
compare the absorption cross sections obtained in the pertur-
bational approach with those obtained in the direct dynamical
approach, since the short pulse will have only a small effect on
the reference state. In other words, the ground-state two-photon
matrix elementsSRâ are relevant in the sense that they may
describe the onset for population of the excited states by
coherent multiphoton absorption, but they cannot provide the
complete picture for longer pulses.

The results from simulations of the laser pulse propagation
are presented in Figures 3 and 4 for the cases of short (100 fs)

and long (10 ns) pulses, respectively. Two separate wavelengths
of 532 and 694 nm are considered, and the relative energies of
the incident light versus the electronic state separations are
illustrated in Figure 2.

The intersystem crossing rate is slower than the duration of
the shorter pulse. In the 100 fs simulation the influence of the
excited-state absorption in the triplet manifold is found negli-
gible. An observed clamping level of about 6 nJ is found at a
laser wavelength of 532 nm, regardless of whether the triplet-
triplet channels are included in the simulations. For the longer
wavelength the nonresonant one-photon absorption in the ground
state is of course weaker than that for the short wavelength,
and in addition, the two-photon resonance corresponding to state
5 1Ag is an order of magnitude stronger than that for state
1 1Ag, which further promotes a lower clamping level at 532
nm compared to the situation at 694 nm. The inset in Figure 3
also shows that clamping is not observed at 694 nm for the
laser pulse energies under consideration.

The intersystem crossing rate is, on the other hand, faster
than the duration of the longer pulse, and we expect therefore
that the influence of the triplet manifold increases. Our
simulations clearly demonstrate that this assumption is correct;

Figure 3. Optical power limiting at 532 nm with use of the ATP
chromophore in a 1 mmglass at a concentration of 0.02 M. The pulse
length is 100 fs.

Figure 4. Optical power limiting at 532 nm with use of the ATP
chromophore in a 1 mmglass at a concentration of 0.02 M. The pulse
length is 10 ns.
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in Figure 4 it is seen that a clamping level of about 2.5µJ is
found when triplet-triplet absorption is included whereas, as
triplet-triplet absorption is excluded, clamping is not reached
within the energy region under consideration. This strong
dependence of the optical power limiting characteristics at
532 nm on the absorption in the triplet manifold is explained
by the large transition moment (My ) 2.154 au) between states
1 3Bu and 103Ag (see Table 1). For the longer wavelength, on
the other hand, there is no state for which the excited triplet
state absorption is strong, and in the pulse propagation simula-
tion in Figure 4 it is also seen that the absorption is virtually
linear throughout the energy region of 0-40 µJ.

If we compare the results for the two pulse lengths, it is clear
that the inclusion of the triplet manifold is crucial for clamping
to occur with the longer of the two laser pulses but not with
the shorter one. This is a result that we could not have
anticipated from merely looking at the quantum mechanical
results for the transition moments and excitation energies but
rather it requires the consideration of the population dynamics
in the chromophore medium. The reason for the requirement
of the triplet manifold to obtain low-level clamping for the
longer pulse is that, in this case, the excited singlet state
absorption is effectively prohibited due to saturation of the high-
lying singlet state. So we conclude that efficient optical power
limiting relies not only on strong absorption between excited-
to-excited states but also that saturation of available absorption
channels (in the singlet and triplet manifolds) does not occur.

V. Concluding Remarks

We have demonstrated simulations of clamping levels in
optical power limiting applications that, apart from relaxation
parameters, are based on first principles. Our multiphysics
modeling approach combines quantum mechanical and classical
wave mechanical calculations that make it possible to pinpoint
the importance of specific absorption channels to the clamping
level, and that can tie the electronic structure of the chromophore
to the overall performance of the material. We believe that our
modeling approach provides a versatile tool to guide synthetic
work.

Acknowledgment. This work received financial support
from the Sensor Protection project within the NanoTek program
(www.nanotek.se) that is run by the Swedish Defence Agencies.
The authors acknowledge a grant for computing time at the
National Supercomputer Centre (NSC), Sweden, and financial
support from NordForsk (network grant No. 030262). Prof. Faris
Gel’mukhanov is gratefully acknowledged for his important
contributions to the theory used in the present work.

References and Notes

(1) McKay, T. J.; Bolger, J. A.; Staromlynska, J.; Davy, J. R.J. Chem.
Phys.1998, 118, 5537.

(2) Parker, C. A.Photoluminescence of solutions; Elsevier: New York,
1968.

(3) Cooper, T. M.; McLean, D. G.; Rogers, J. E.Chem. Phys. Lett.
2001, 349, 31.

(4) Norman, P.; Cronstrand, P.; Ericsson, J. Chem. Phys.2002, 285,
207.

(5) Rogers, J. E.; Cooper, T. M.; Fleitz, P. A.; Glass, D. J.; McLean,
D. G. J. Phys. Chem. A2002, 106, 10108.

(6) Rogers, J. E.; Nguyen, K. A.; Hufnagle, D. C.; McLean, D. G.;
Su, W.; Gossett, K. M.; Burke, A. R.; Vinogradov, S. A.; Pachter, R.; Fleitz,
P. A. J. Phys. Chem. A2003, 107, 11331.

(7) Rogers, J. E.; Slagle, J. E.; McLean, D. G.; Sutherland, R. L.;
Sankaran, B.; Kannan, R.; Tan, L.-S.; Fleitz, P. A.J. Phys. Chem. A2004,
108, 5514.

(8) Baev, A.; Gel’mukhanov, F.; Kimberg, V.; A° gren, H.J. Phys. B:
At. Mol. Opt. Phys.2003, 36, 3761.

(9) Baev, A.; Gel’mukhanov, F.; Macak, P.; A° gren, H.; Luo, Y.J.
Chem. Phys.2002, 117, 6214.

(10) Jackson, J. D.Classical Electrodynamics, 3rd ed.; Wiley: New
York, 1999.

(11) Boyd, R. W.Nonlinear Optics; Academic Press: San Diego, CA,
1992.

(12) Gel’mukhanov, F.; Baev, A.; Macak, P.; Luo, Y.; A° gren, H.J. Opt.
Soc. Am. B2002, 19, 937.

(13) Becke, A. D.J. Chem. Phys.1993, 98, 5648.
(14) Bergner, A.; Dolg, M.; Kuchle, W.; Stoll, H.; Preuss, H.Mol. Phys.

1993, 80, 1431.
(15) Andrae, D.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H.Theor.

Chim. Acta1990, 77, 123.
(16) Hehre, W. J.; Ditchfield, R.; Pople, J. A.J. Chem. Phys.1972, 56,

2257.
(17) Yanai, T.; Tew, D. P.; Handy, N. C.Chem. Phys. Lett.2004, 393,

51.
(18) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,

M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.;
Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,
I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M.
W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.;
Head-Gordon, M.; Replogle, E. S.; Pople, J. A.Gaussian 98; Gaussian,
Inc.: Pittsburgh, PA, 1998.

(19) Dalton, a molecular electronic structure program, release 2.0, 2005.
(20) Peach, M. J. G.; Helgaker, T.; Salek, P.; Keal, T. W.; Lutnæs, O.

B.; Tozer, D. J.; Handy, N. C.Phys. Chem. Chem. Phys.2006, 8, 558.
(21) Paterson, M. J.; Christiansen, O.; Pawlowski, F.; Jørgensen, P.;

Hättig, C.; Helgaker, T.; Salek, P.J. Chem. Phys.2006, 124, 054322.
(22) Lopes, C. Private communication.
(23) Norman, P.; Ruud, K. InNonlinear optical properties of matter:

From molecules to condensed phases; Papadopoulos, M., Leszczynski, J.,
Sadlej, A. J., Eds.; Kluwer Academic Press: New York, 2006.

20916 J. Phys. Chem. B, Vol. 110, No. 42, 2006 Baev et al.



100 Paper VI


	Introduction
	Optical Power Limiting
	Passive Protection and Jablonski Diagrams
	Active Protection and Spin-transitions

	Molecular Electronic-structure Theory
	Self-consistent Field Theory
	Wave Function Methods
	Density Functional Theory
	Relativistic Considerations

	Basis Sets
	Effective Core Potentials

	Response Theory
	Electric Field Induced Response Functions


	Clamping Levels in Optical Power Limiting
	Bibliography
	List of Publications
	Included Papers
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI



